1
|
Jiang M, Nie R, Kang J, Li P, Dong A. Mild Phototherapy Strategies for Preventing Pathogen Infection and Enhancing Cell Proliferation in Diabetic Wound. Adv Healthc Mater 2025:e2500862. [PMID: 40289488 DOI: 10.1002/adhm.202500862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Excessive inflammation, bacterial infection, and impaired cell proliferation posed significant challenges to diabetic wound healing. There is an urgent need for an effective method that can simultaneously provide antibacterial activity and promote cell proliferation to facilitate the healing of bacteria-infected diabetic wounds. In this study, a novel nanoplatform, GDYO-VPIM-Au is designed, by co-decorating 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) and gold nanorods (Au NRs) on graphdiyne oxide (GDYO) nanosheets. GDYO-VPIM-Au exhibited excellent antibacterial properties against drug-resistant bacteria through reactive oxygen species (ROS) generation and electrostatic interactions. Moreover, GDYO-VPIM-Au with the synergistic effect of mild phototherapy therapy (mPTT) produced by Au NRs can promote efficient cell proliferation and significantly accelerate the healing of infected diabetic wounds. This work represented a promising therapeutic strategy for addressing drug-resistant bacterial infections and enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Mingji Jiang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| | - Renhao Nie
- State Key Laboratory of Flexible Electronics (LoFE), Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LoFE), Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| |
Collapse
|
2
|
Chen L, Zeng S, Jiang Z, Huang C, Zhang H, Liu X, Liu B, Wen Q, Zhou H, Shi P, Liu K, Yang L. Collagen-rich porcine acellular dermal matrix-eggshell membrane sponge promotes programmed healing of diabetic wounds through the sustained release of Cu 2+/Zn 2. Int J Biol Macromol 2025; 310:143545. [PMID: 40294670 DOI: 10.1016/j.ijbiomac.2025.143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Eggshell membrane (ES) is a low-cost, high-value extracellular matrix biomaterial. However, natural ES has disadvantages, such as poor water solubility and difficulty in controlling its shape and size, which limit its application as a biomaterial. In this study, we prepared an eggshell membrane drug-loaded sponge (PES@Cu-Zn) with haemostatic, anti-inflammatory, and healing properties for managing diabetic wounds. CuO/ZnO was introduced into the three-dimensional structure of PES by electrostatic adsorption to form PES@Cu-Zn sponges with good exudate absorption capacity and shape memory. The slow and coordinated release of Cu2+/Zn2+ (32 % released in 7 days) promotes the proliferation and migration of wound repair cells and angiogenesis. In a rat haemostasis model, the haemostatic effect of the PES@Cu-Zn sponge was 1.5 times greater than that of the control. When the PES@Cu-Zn sponge was applied to diabetic wounds in rats, the results showed that the sponge accelerated wound healing by reducing wound inflammation and promoting collagen deposition, angiogenesis, and re-epithelialisation. In conclusion, this eggshell membrane sponge dressing is a promising strategy for promoting programmed healing of diabetic wounds using green and renewable eggshell membranes.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Shuaidan Zeng
- Department of Orthopedics, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - HuiHui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Bo Liu
- Department of Burns and Plastic, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, Guangxi, China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hai Zhou
- Yunfu People's Hospital, Central Laboratory of Yunfu People's Hospital. No. 120 Huanshi East Road, Yuncheng District, Yunfu City 527399, China.
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China.
| |
Collapse
|
3
|
Xu H, Yang J, Wei Z, Bao S, Liu Z. Oxidative stress in vascular surgical diseases: mechanisms, impacts and therapeutic perspectives. Front Pharmacol 2025; 16:1527684. [PMID: 40271068 PMCID: PMC12014636 DOI: 10.3389/fphar.2025.1527684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
The role of oxidative stress in vascular surgical diseases has increasingly been recognized as significant. This paper systematically reviews the specific mechanisms of oxidative stress in a various vascular surgical condition, including aortic dissection, abdominal aortic aneurysm, thrombosis, diabetic foot, and thromboangiitis obliterans, while also exploring related therapeutic strategies. Oxidative stress arises from an imbalance between free radicals and antioxidants, where excess reactive oxygen species and other free radicals can exacerbate inflammatory response. This paper delves into the pathogenic mechanisms of oxidative stress in the aforementioned diseases and discusses potential methods for utilizing antioxidants to reduce oxidative stress levels. Additionally, this paper highlights the challenges faced by current antioxidant therapies and identifies future research directions. By summarizing current research progress, this paper aims to provide a theoretical basis for more effective treatment strategies of vascular surgical diseases, with the hope of advancing the field.
Collapse
Affiliation(s)
- Haosen Xu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jin Yang
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhanhui Wei
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shijie Bao
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Duan W, Gao Y, Xu R, Huang S, Xia X, Zhao J, Zeng L, Wei Q, Shen JW, Wu J, Zheng Y. Engineering dual-driven pro-angiogenic nanozyme based on porous silicon for synergistic acceleration of burn infected wound healing. Mater Today Bio 2025; 31:101522. [PMID: 39935892 PMCID: PMC11810849 DOI: 10.1016/j.mtbio.2025.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The high mortality risk of burn infected wounds has dictated the clinical need for the development of new biomaterials that can regulate multiple aspects of the healing process in a high-quality manner. Although nanozymes have made progress in inflammation modulation and antibacterial management, they often lack the ability in pro-angiogenesis, which greatly limits their functional application in the synergistic treatment of burn infected wounds. In this study, a smart pro-angiogenic nanozyme is simply and efficiently synthesized by in situ reduction of Pt precursors on porous silicon (PSi) nanocarriers. Owing to the hybridization of Pt, the Pt-decorated PSi (Pt@PSi) nanocomposites exhibit excellent near-infrared (NIR) photothermal activity and peroxidase-like catalytic activity, which can be used for co-efficient antibacterial treatment. After exposure to 808 nm NIR laser, Pt@PSi-based photothermal and nano-catalytic combined therapy can achieve more than 95 % bacterial inhibition in vitro. More importantly, under the stimulation of NIR laser and nanozyme, the smart Pt@PSi nanocomposites can efficiently release bioactive inorganic Si ions from the PSi skeleton, which can efficiently promote endothelial cell migration, tube formation, and angiogenesis. Furthermore, In vivo animal studies have demonstrated that Pt@PSi-based combination therapy can significantly accelerate the healing of infected burn infections by inhibiting bacterial growth, scavenging reactive oxygen species, and promoting angiogenesis with a favorable biosafety. Overall, the dual-driven pro-angiogenic nanozyme based on PSi expands the functional application of nanozyme, providing a novel combined strategy for efficient care of difficult-to-heal burn infected wounds.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xueqian Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Longhuan Zeng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongke Zheng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| |
Collapse
|
5
|
Borkow G, Melamed E. The Journey of Copper-Impregnated Dressings in Wound Healing: From a Medical Hypothesis to Clinical Practice. Biomedicines 2025; 13:562. [PMID: 40149539 PMCID: PMC11939876 DOI: 10.3390/biomedicines13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives. Chronic wounds pose a substantial global healthcare burden exacerbated by aging populations and the increasing prevalence of conditions such as diabetes, peripheral vascular disease, and venous insufficiency. Impaired physiological repair mechanisms, including angiogenesis, collagen synthesis, and re-epithelialization, hinder the healing process in chronic wounds. Many of these physiological processes are dependent on their interaction with copper. We hypothesized that the targeted delivery of copper ions to the wound bed would enhance healing. Methods. Wound dressings impregnated with copper oxide microparticles were designed to ensure the controlled release of copper ions. The efficacy of these dressings was evaluated using non-infected wound models, including diabetic mouse models compared against control and silver dressings. Outcome measures included wound closure rates, epidermal skin quality assessed by histopathological examination, and gene expression profiling. Clinical applications were assessed through diverse case studies and controlled trials involving chronic wound management. Results. Copper dressings significantly accelerated wound closure and enhanced angiogenesis compared to control and silver dressings. Histopathological analyses revealed faster granulation tissue formation, epidermal regeneration, and neovascularization. Gene expression studies showed upregulation of critical angiogenic factors such as VEGF and HIF-1α. Investigations and clinical observations corroborated improved healing across various chronic wound types, including non-infected wounds. Conclusions. Copper is essential for wound healing, and copper-impregnated dressings provide a promising solution for chronic wound management. By enhancing angiogenesis and tissue regeneration, these dressings go beyond antimicrobial action, offering a cost-effective and innovative alternative to conventional therapies. Copper dressings represent a transformative advancement in addressing the challenges of chronic wound care.
Collapse
Affiliation(s)
- Gadi Borkow
- MedCu Technologies Ltd., Herzliya 4672200, Israel
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Masada 8691000, Israel
| | - Eyal Melamed
- Foot and Ankle Service, Department of Orthopedics, Bnai Zion Medical Center, Haifa 3109601, Israel
| |
Collapse
|
6
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
7
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
8
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Han C, Feng Z, Wang Y, Hu M, Xu S, Jiang F, Han Y, Liu Z, Li Y. Copper metabolism-related signature for prognosis prediction and MMP13 served as malignant factor for breast cancer. Heliyon 2024; 10:e36445. [PMID: 39315182 PMCID: PMC11417231 DOI: 10.1016/j.heliyon.2024.e36445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives To comprehensively analyze the copper metabolism in Breast cancer, we established a prognostic signature for breast cancer (BC) related to copper metabolism. Methods Copper metabolism-related genes were sourced from previous literatures and were selected by the Univariate Cox regression. Cu-enrichment scores were calculated via ssGSEA. Differentially expressed genes were identified with limma between high and low Cu-enrichment scores group, then we used the Random Survival Forest and LASSO to build the CuScore for BC. Kaplan-Meier analysis, ROC curves, and Cox regression were used to evaluate CuScore. Genomic mutations were analyzed with GISTIC. Immune cells were examined using ESTIMATE, ssGSEA and TIMER. Enrichment analysis used clusterProfiler and GSVA. The GDSC database and oncoPredict package analyzed chemotherapeutic sensitivity. MMP13 was selected for in vitro assays. Results Four copper metabolism-related genes (UBE2D2, SLC31A1, ATP7A, and MAPK1) with prognostic value were identified. Higher expression levels of these genes were associated with higher Cu-enrichment scores, a factor of malignancy in breast cancer. Among 115 differentially expressed genes, 19 prognostic genes were identified, with three (CEACAM5, MMP13, and CRISP3) highlighted by Random Survival Forest and LASSO. Higher CuScores correlated with worse prognoses and were effective in predicting breast cancer outcomes. CuScore and metastasis were independent prognostic factors. Tumor-infiltrating immune cells were associated with lower CuScores. GO-GSEA analysis indicated six immune-related pathways might be regulated by CuScore. Patients with higher CuScores had lower TMB and were more sensitive to Sapitinib and LCL161, while those with lower CuScores might respond better to anti-PD1 therapy. High MMP13 expression in breast cancer was linked to malignancy, affecting cell proliferation and migration. Conclusion The identified copper metabolism-related gene signature has the potential to predict prognosis and guide clinical treatment for BC. Among these genes, MMP13 may act as a malignant factor in BC.
Collapse
Affiliation(s)
- Chaojie Han
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
- Zhejiang Zhenyuan Biotech Co., LTD, 61 Yuedongbei Road, Shaoxing, Zhejiang, 312000, China
| | - Zhangyang Feng
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
10
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Hou B, Li B, Deng W, Li B, Ren B, Hu C, Zhang G, Yang F, Xiao M, Xie S, Xie D. DHTPY-Cu@ZOL-Enhanced Photodynamic Therapy: A Strategic Platform for Advanced Treatment of Drug-Resistant Bacterial Wound Infections. Int J Nanomedicine 2024; 19:6319-6336. [PMID: 38919773 PMCID: PMC11198012 DOI: 10.2147/ijn.s458520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose This research was to innovate a nanozyme-based therapeutic strategy that combines aggregation-induced emission (AIE) photosensitizers with copper nanozymes. This approach is designed to address the hypoxic conditions often found in bacterial infections and aims to boost the effectiveness of photodynamic therapy (PDT) by ensuring sufficient oxygen supply for reactive oxygen species (ROS) generation. Methods Our approach involved the synthesis of dihydroxyl triphenyl vinyl pyridine (DHTPY)-Cu@zoledronic acid (ZOL) nanozyme particles. We initially synthesized DHTPY and then combined it with copper nanozymes to form the DHTPY-Cu@ZOL composite. The nanozyme's size, morphology, and chemical properties were characterized using various techniques, including dynamic light scattering, transmission electron microscopy, and X-ray photoelectron spectroscopy. We conducted a series of in vitro and in vivo tests to evaluate the photodynamic, antibacterial, and wound-healing properties of the DHTPY-Cu@ZOL nanozymes, including their oxygen-generation capacity, ROS production, and antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Results The DHTPY-Cu@ZOL exhibited proficient H2O2 scavenging and oxygen generation, crucial for enhancing PDT in oxygen-deprived infection environments. Our in vitro analysis revealed a notable antibacterial effect against MRSA, suggesting the nanozymes' potential to disrupt bacterial cell membranes. Further, in vivo studies using a diabetic rat model with MRSA-infected wounds showed that DHTPY-Cu@ZOL markedly improved wound healing and reduced bacterial presence, underscoring its efficacy as a non-antibiotic approach for chronic infections. Conclusion Our study suggests that DHTPY-Cu@ZOL is a highly promising approach for combating antibiotic-resistant microbial pathogens and biofilms. The biocompatibility and stability of these nanozyme particles, coupled with their improved PDT efficacy position them as a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Biao Hou
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wanjun Deng
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Bo Li
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangzhou, Guangdong Province, People’s Republic of China
| | - Bibo Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Chao Hu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Guowei Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangzhou, Guangdong Province, People’s Republic of China
| | - Fen Yang
- Department of Infectious Diseases, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Meimei Xiao
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
12
|
Jiang T, Chen W, Lu C, Yang J, Zeng Z, Li W, Liu H, Huang N, Chen Y, Liu W. A Multifunctional Nanozyme Integrating Antioxidant, Antimicrobial and Pro-Vascularity for Skin Wound Management. Int J Nanomedicine 2024; 19:3217-3232. [PMID: 38596410 PMCID: PMC11001553 DOI: 10.2147/ijn.s452216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Background Skin wounds are a prevalent issue that can have severe health consequences if not treated correctly. Nanozymes offer a promising therapeutic approach for the treatment of skin wounds, owing to their advantages in regulating redox homeostasis to reduce oxidative damage and kill bacteria. These properties make them an effective treatment option for skin wounds. However, most of current nanozymes lack the capability to simultaneously address inflammation, oxidative stress, and bacterial infection during the wound healing process. There is still great potential for nanozymes to increase their therapeutic functional diversity and efficacy. Methods Herein, copper-doped hollow mesopores cerium oxide (Cu-HMCe) nanozymes with multifunctional of antioxidant, antimicrobial and pro-vascularity is successfully prepared. Cu-HMCe can be efficiently prepared through a simple and rapid solution method and displays sound physiological stability. The biocompatibility, pro-angiogenic, antimicrobial, and antioxidant properties of Cu-HMCe were assessed. Moreover, a full-thickness skin defect infection model was utilized to investigate the wound healing capacity, as well as anti-inflammatory and pro-angiogenic properties of nanozymes in vivo. Results Both in vitro and in vivo experiments have substantiated Cu-HMCe's remarkable biocompatibility. Moreover, Cu-HMCe possesses potent antioxidant enzyme-like catalytic activity, effectively clearing DPPH radicals (with a scavenging rate of 80%), hydroxyl radicals, and reactive oxygen species. Additionally, Cu-HMCe exhibits excellent antimicrobial and pro-angiogenic properties, with over 70% inhibition of both E. coli and S. aureus. These properties collectively promote wound healing, and the wound treated with Cu-HMCe achieved a closure rate of over 90% on the 14th day. Conclusion The results indicate that multifunctional Cu-HMCe with antioxidant, antimicrobial, and pro-angiogenic properties was successfully prepared and exhibited remarkable efficacy in promoting wound healing. This nanozymes providing a promising strategy for skin repair.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
- Department of Orthopedics, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Weijian Chen
- The Fifth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Chao Lu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
- Department of Orthopedics, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Jiyong Yang
- The Fifth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Ziquan Zeng
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
- Department of Orthopedics, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongsheng Liu
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, 511441, People’s Republic of China
| | - Nana Huang
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, 511441, People’s Republic of China
| | - Yuhui Chen
- Department of Traumatic Surgery, Center for Orthopaedic Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
- Department of Orthopedics, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| |
Collapse
|
13
|
Qin X, Tian R, Wang B, Yang H, Chen J, Wang X, Zhou J, Chen Q, Tian J, Yang YW. Metal-Phenolic Nanocapsules with Photothermal Antibacterial and Ros Scavenging Ability for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303604. [PMID: 38165358 DOI: 10.1002/adhm.202303604] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The presence of bacteria in diabetic wounds not only leads to the formation of biofilms but also triggers oxidative stress and inflammatory responses, which hinder the wound-healing process. Therefore, it is imperative to formulate a comprehensive strategy that can proficiently eliminate bacteria and enhance the wound microenvironment. Herein, this work develops multifunctional metal-phenolic nanozymes (TA-Fe/Cu nanocapsules), wherein the one-pot coordination of tannic acid (TA)and Fe3+/Cu2+ using a self-sacrificial template afforded hollow nanoparticles (NPs) with exceptional photothermal and reactive oxygen species scavenging capabilities. After photothermal disruption of the biofilms, TA-Fe/Cu NPs autonomously capture bacteria through hydrogen bonding interactions with peptidoglycans (the bacterial cell wall component), ultimately bolstering the bactericidal efficacy. Furthermore, these NPs exhibit peroxidase-like enzymatic activity, efficiently eliminating surplus hydrogen peroxide in the vicinity of the wound and mitigating inflammatory responses. As the wound transitions into the remodeling phase, the presence of Cu2+ stimulates vascular migration and regeneration, expediting the wound-healing process. This study innovatively devises a minimalist approach to synthesize multifunctional metal-phenolic nanozymes integrating potent photothermal antibacterial activity, bacterial capture, anti-inflammatory, and angiogenesis properties, showcasing their great potential for diabetic wound treatment.
Collapse
Affiliation(s)
- Xudong Qin
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haixia Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Junyang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xin Wang
- College of Chemistry, China-Japan Union Hospital of Jilin University, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying-Wei Yang
- College of Chemistry, China-Japan Union Hospital of Jilin University, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
14
|
Zhu D, Wei W, Zhang J, Zhao B, Li Q, Jin P. Mechanism of damage of HIF-1 signaling in chronic diabetic foot ulcers and its related therapeutic perspectives. Heliyon 2024; 10:e24656. [PMID: 38318060 PMCID: PMC10839564 DOI: 10.1016/j.heliyon.2024.e24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic complication of diabetes. Wound healing in patients with DFU is generally very slow, with a high recurrence rate even after the ulcer healed. The DFU remains a major clinical challenge due to a lack of understanding of its pathogenesis. Given the significant impact of DFU on patient health and medical costs, enhancing our understanding of pathophysiological alterations and wound healing in DFU is critical. A growing body of research has shown that impaired activation of the HIF-1 pathway in diabetics, which weakens HIF-1 mediated responses to hypoxia and leads to down-regulation of its downstream target genes, leading to incurable diabetic foot ulcers. By analyzing and summarizing the literature in recent years, this review summarizes the mechanism of HIF-1 signaling pathway damage in the development of DFU, analyzes and compares the application of PHD inhibitors, VHL inhibitors, biomaterials and stem cell therapy in chronic wounds of diabetes, and proposes a new treatment scheme mediated by participation in the HIF-1 signaling pathway, which provides new ideas for the treatment of DFU.
Collapse
Affiliation(s)
- Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
16
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
17
|
Yu X, Wang Y, Zhang J, Liu J, Wang A, Ding L. Recent Development of Copper-Based Nanozymes for Biomedical Applications. Adv Healthc Mater 2024; 13:e2302023. [PMID: 37742127 DOI: 10.1002/adhm.202302023] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Copper (Cu), an indispensable trace element within the human body, serving as an intrinsic constituent of numerous natural enzymes, carrying out vital biological functions. Furthermore, nanomaterials exhibiting enzyme-mimicking properties, commonly known as nanozymes, possess distinct advantages over their natural enzyme counterparts, including cost-effectiveness, enhanced stability, and adjustable performance. These advantageous attributes have captivated the attention of researchers, inspiring them to devise various Cu-based nanomaterials, such as copper oxide, Cu metal-organic framework, and CuS, and explore their potential in enzymatic catalysis. This comprehensive review encapsulates the most recent advancements in Cu-based nanozymes, illuminating their applications in the realm of biochemistry. Initially, it is delved into the emulation of typical enzyme types achieved by Cu-based nanomaterials. Subsequently, the latest breakthroughs concerning Cu-based nanozymes in biochemical sensing, bacterial inhibition, cancer therapy, and neurodegenerative diseases treatment is discussed. Within this segment, it is also explored the modulation of Cu-based nanozyme activity. Finally, a visionary outlook for the future development of Cu-based nanozymes is presented.
Collapse
Affiliation(s)
- Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
18
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|