1
|
Jeo WS, Lalisang TJM, Siregar NC, Sudoyo AW, Pakasi T, Jusman SW, Asmarinah A. Semiquantitative assessment of phosphatase and tensin homolog value with immunohistochemistry in colorectal cancer. Int J Biol Markers 2024; 39:248-254. [PMID: 39118563 DOI: 10.1177/03936155241265346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Colorectal cancer has emerged as a concerning health problem, ranking the third most common form of cancer in both men and women. The phosphatase and tensin homologue (PTEN) protein is widely known for its role as an inhibitor of the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, playing a major role inhibiting tumor development. Previous studies investigated the role of this protein in the PI3K pathway and how it affected colorectal cancer. However, a standardized cut-off value for PTEN expression has not been established. METHODS Immunohistochemistry was used in examining PTEN. The staining grade ranging from 0 to 3 was then multiplied by the number of 100 cancer cells counted, with total score between 0 and 300. In this study, receiver operating characteristic (ROC) curve was employed to determine the expression cut-off value for PTEN in colorectal cancer. RESULTS This study showed statistically significant results (P < 0.001) in either tumor or non-tumor tissues by using the ROC curve with a cut-off value of 199.0. This study also revealed significant correlation between nodal status with PTEN (P = 0.008) and stage with PTEN (P = 0.019) with sensitivity 0.753 and specificity 0.728. CONCLUSION Semiquantitative assessment with cell counting multiplied by color intensity is a good method in determining PTEN expression. The use of immunohistochemical staining intensity and cell scoring with ROC cut-off is effective to elaborate the effects of PTEN in colorectal cancer (PTEN value > 199.0 was classified as strong and ≤ 199.0 as weak).
Collapse
Affiliation(s)
- Wifanto S Jeo
- Department of Surgery, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Toar J M Lalisang
- Department of Surgery, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Nurjati C Siregar
- Department of Pathology Anatomy, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Aru W Sudoyo
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Trevino Pakasi
- Department of Primary Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Sri W Jusman
- Department of Biochemistry, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Asmarinah Asmarinah
- Department of Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
El-Korany WA, Zahran WE, Alm El-Din MA, Al-Shenawy HA, Soliman AF. Rs12039395 Variant Influences the Expression of hsa-miR-181a-5p and PTEN Toward Colorectal Cancer Risk. Dig Dis Sci 2024; 69:3318-3332. [PMID: 38940971 DOI: 10.1007/s10620-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.
Collapse
Affiliation(s)
- Wael A El-Korany
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid E Zahran
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A Alm El-Din
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Hanan A Al-Shenawy
- Pathology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Osman HA, Hassan MH, Toema AM, Abdelnaby AA, Abozeid MA, Mohamed MA, Hashim AA, Husein A, Ahmed AE, Elsayed SS, El-Ghannam S, Abdelhady M, Abdelrazek GM. Prognostic role of immunohistochemical PTEN (phosphatase and tensin homolog) expression and PTEN (rs701848) genotypes among Egyptian patients with different stages of colorectal cancer. J Cancer 2024; 15:5046-5057. [PMID: 39132163 PMCID: PMC11310872 DOI: 10.7150/jca.97553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second major cause of cancer-related death. Thus, we attempted to ascertain the relationship between the genotype and allele frequencies of phosphatase and tensin homolog (PTEN) and immunohistochemical PTEN expression with clinicopathological characteristics in patients with CRC. 150 individuals were allocated into two groups for this cross-sectional randomized case-control study: Group I consisted of 100 patients with histopathologically proven CRC of various stages. Group II: Fifty healthy volunteers. Genetic analysis of PTEN (rs701848 T / C) single nucleotide polymorphism (SNP) was performed using TaqManTM assays and real-time PCR, while PTEN expressions were assessed using immunohistochemical staining. PTN SNP genotypes and alleles did not significantly differ between CRC patients and controls. PTEN expression was lost in 28% of CRC patients, while all healthy controls exhibited PTEN expression. Negative PTEN expression was present in 16 (80%) of stage IV CRC cases, 9 (23.7%) of stage III cases, 3 (37.5%) of stage II cases, and none of stage I cases. It was shown that PTEN expression was weakly positive, moderately positive, and strongly positive in 15, 10, and 9 (respectively) cases of CRC stage I. However, the expression was only weekly positive in 4 (20%) of the patients in stage IV. In the stage IV group, neither moderately nor strongly positive PTEN expressions were found. So, Among Egyptians, the emergence or course of colorectal cancer is unrelated to the PTEN gene mutation. However, the formation and progression of CRC may be influenced by weak or lost PTEN expression.
Collapse
Affiliation(s)
- Heba Ahmed Osman
- Department Of Tropical Medicine and Gastroenterology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed H. Hassan
- Department Of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
- Department of Biochemistry, Clinical Pharmacy Program, South Valley National University, Qena, Egypt
| | - Abdelaziz Mostafa Toema
- Department of Oncology and Nuclear Medicine, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
- Oncology Center, John's Hopkins Aramco Healthcare, KSA
| | - Amira A. Abdelnaby
- Department of Pathology, Faculty of medicine, Sohag University, Sohag, Egypt
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan
| | - Mahmoud A. Abozeid
- Department of General surgery, Faculty of medicine, South Valley University, Qena, Egypt
| | | | | | - AbdAlraheem Husein
- Department of Radiodiagnosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abdelazeem E. Ahmed
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | | | - Sherief El-Ghannam
- Department of Clinical Pathology, Damietta Faculty of Medicine, Al-Azhar University, New Damietta City, Egypt
| | - Marwa Abdelhady
- Department of Internal Medicine, Faculty of Medicine, Luxor University, Luxor, Egypt
| | - Ghada M. Abdelrazek
- Department of Radiodiagnosis, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Ren G, Chen J, Pu Y, Yang EJ, Tao S, Mou PK, Chen LJ, Zhu W, Chan KL, Luo G, Deng C, Shim JS. BET inhibition induces synthetic lethality in PTEN deficient colorectal cancers via dual action on p21 CIP1/WAF1. Int J Biol Sci 2024; 20:1978-1991. [PMID: 38617536 PMCID: PMC11008266 DOI: 10.7150/ijbs.91867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.
Collapse
Affiliation(s)
- Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jinghong Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Central laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Pu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Li-Jie Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | | | | | | | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
5
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
6
|
Liu Y, Sun M, Zhang B, Zhao W. KIF18A improves migration and invasion of colorectal cancer (CRC) cells through inhibiting PTEN signaling. Aging (Albany NY) 2023; 15:9182-9192. [PMID: 37708299 PMCID: PMC10522371 DOI: 10.18632/aging.205027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Kinesin family member 18A (KIF18A) is involved in the development of a variety of human malignancies. However, we have never known the influences of KIF18A on colorectal cancer (CRC). The study is designed to investigate the effect and molecular mechanism of KIF18A on the progression of colorectal cancer. METHODS We have not only analyzed the database using GEO, but have examined the effect of KIF18A on the development of CRC by subcutaneous tumorigenesis in nude mice. HE staining was used to observe tumor size. Besides, we make use of Western blotting to monitor the expression of related proteins. In addition, the scratch wound assay and Transwell assay were conducted to detect the effect of KIF18A on the migration and invasion of CRC cells. RESULTS The results of GEO database analysis suggested that KIF18A had a positive correlation with the growth of CRC. The results of subcutaneous tumorigenesis and HE staining in nude mice explained that KIF18A promoted the progression of CRC. Both scratch wound assay and Transwell indicated that the migration and invasion of CRC could be promoted by KIF18A. The results of Western blot illustrated that KIF18A could forward the migration and invasion of CRC cells, and inhibit PTEN, which promoted the activation of PI3K/Akt signaling pathway, thus bringing about the expression of MMP2 and MMP9. CONCLUSION In conclusion, KIF18A can further the activation of PI3K/Akt signaling pathway by means of inhibiting PTEN transcription. Therefore, it is inferred that that KIF18A is a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
7
|
Kortam MA, Elfar N, Shaker OG, El-Boghdady NA, Abd-Elmawla MA. MAGI2-AS3 and miR-374b-5p as Putative Regulators of Multiple Sclerosis via Modulating the PTEN/AKT/IRF-3/IFN-β Axis: New Clinical Insights. ACS Chem Neurosci 2023; 14:1107-1118. [PMID: 36878000 DOI: 10.1021/acschemneuro.2c00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic disease and one of the leading causes of disability in young adults. The current study aims to investigate the pathogenesis of MS via studying the regulatory role of novel lncRNA MAGI2-AS3 in miR-374b-5p and their downstream targets PTEN/AKT/IRF-3/IFN-β and the relationship of this pathway with disease severity. Moreover, it aims to assess the role of MAGI2-AS3/miR-374b-5p as diagnostic and/or prognostic biomarkers for MS. Overall, 150 contributors were recruited: 100 patients with MS and 50 healthy volunteers. Gene expression of MAGI2-AS3, miR-374b-5p, PTEN, AKT, and IRF-3 were assessed using RT-qPCR, and IFN-β was measured by ELISA. Compared with the healthy control group, serum MAGI2-AS3 and PTEN were downregulated in MS patients, whereas miR-374b-5p, PI3K, AKT, IRF-3, and IFN-β were upregulated in MS patients. Furthermore, MAGI2-AS3 was downregulated, while miR-374b-5p was upregulated in MS patients with an expanded disability status scale (EDSS) ≥3.5, compared to patients with an EDSS <3.5. Receiver-operating-characteristic curve analysis revealed that MAGI2-AS3 and miR-374b-5p can be used in the diagnosis of MS. Remarkably, multivariate logistic analysis revealed that MAGI2-AS3, miR-374b-5p, PTEN, and AKT act as independent variables in MS. Moreover, MAGI2-AS3 was directly correlated with PTEN and inversely correlated with miR-374b-5p, AKT, and EDSS. Regarding miR-374b-5p, it was positively correlated with AKT and EDSS. In conclusion, the study showed for the first time that the crosstalk between MAGI2-AS3 and miR-374b-5p could affect the AKT/IRF3/IFN-β axis in MS. Interestingly, MAGI2-AS3 and miR-374b-5p could be genetic noninvasive biomarkers for MS.
Collapse
Affiliation(s)
- Mona A Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo 11567, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha A El-Boghdady
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
9
|
D'Ermo G, Genuardi M. Gastrointestinal manifestations in PTEN hamartoma tumor syndrome. Best Pract Res Clin Gastroenterol 2022; 58-59:101792. [PMID: 35988965 DOI: 10.1016/j.bpg.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
The PTEN hamartoma tumor syndrome (PHTS) is a heterogeneous set of multisystem disorders caused by germline pathogenic variants in the PTEN tumor suppressor gene. Manifestations include developmental anomalies and proliferative lesions. Evidence of involvement of the GI tract has accrued over time, leading to the incorporation of GI manifestations (multiple hamartomas, glycogenic acanthosis and colorectal cancer) into the diagnostic criteria. Polyps of the upper and lower GI tract are found in most adult patients and in a significant fraction of children. Polyps tend to be of mixed histology, with a predominance of hamartomas and ganglioneuromas. PHTS patients are also at increased risk of colorectal cancer, and surveillance by colonoscopy is advised starting at the age of 35-40 years. A number of additional manifestations, including eosinophilic gastrointestinal disorders, have been observed in few or single cases, and their association with PHTS has yet to be determined.
Collapse
Affiliation(s)
- Giuseppe D'Ermo
- Dipartimento di Chirurgia "Pietro Valdoni", Università La Sapienza, Rome, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy; Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
10
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
11
|
Zhang X, Li T, Niu Q, Qin CJ, Zhang M, Wu GM, Li HZ, Li Y, Wang C, Du WF, Wang CY, Zhao Q, Zhao XD, Wang XL, Zhu JB. Genome-wide analysis of cell-Free DNA methylation profiling with MeDIP-seq identified potential biomarkers for colorectal cancer. World J Surg Oncol 2022; 20:21. [PMID: 35065650 PMCID: PMC8783473 DOI: 10.1186/s12957-022-02487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer is the most common malignancy and the third leading cause of cancer-related death worldwide. This study aimed to identify potential diagnostic biomarkers for colorectal cancer by genome-wide plasma cell-free DNA (cfDNA) methylation analysis. Methods Peripheral blood from colorectal cancer patients and healthy controls was collected for cfDNA extraction. Genome-wide cfDNA methylation profiling, especially differential methylation profiling between colorectal cancer patients and healthy controls, was performed by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Logistic regression models were established, and the accuracy of this diagnostic model for colorectal cancer was verified using tissue-sourced data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) due to the lack of cfDNA methylation data in public datasets. Results Compared with the control group, 939 differentially methylated regions (DMRs) located in promoter regions were found in colorectal cancer patients; 16 of these DMRs were hypermethylated, and the remaining 923 were hypomethylated. In addition, these hypermethylated genes, mainly PRDM14, RALYL, ELMOD1, and TMEM132E, were validated and confirmed in colorectal cancer by using publicly available DNA methylation data. Conclusions MeDIP-seq can be used as an optimal approach for analyzing cfDNA methylomes, and 12 probes of four differentially methylated genes identified by MeDIP-seq (PRDM14, RALYL, ELMOD1, and TMEM132E) could serve as potential biomarkers for clinical application in patients with colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02487-4.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qiang Niu
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Ming Zhang
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Guang-Ming Wu
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Hua-Zhong Li
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Yan Li
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Chen Wang
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Wen-Fei Du
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen-Yang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Dong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China. .,Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| | - Jian-Bin Zhu
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China.
| |
Collapse
|
12
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
13
|
Sanaei MJ, Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Shahrokh S, Zali MR, Bashash D. The PI3K/Akt/mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J Cell Physiol 2021; 237:1720-1752. [PMID: 34897682 DOI: 10.1002/jcp.30655] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest human malignancies worldwide. Several molecular pathways have been demonstrated to be involved in the initiation and development of CRC which among them, the overactivation of the phosphatidyl-inositol 3-kinase (PI3K)/Akt/mTOR axis is of importance. The current review aims to unravel the mechanisms by which the PI3K/Akt/mTOR pathway affects CRC progression; and also, to summarize the original data obtained from international research laboratories on the oncogenic alterations and polymorphisms affecting this pathway in CRC. Besides, we provide a special focus on the regulatory role of noncoding RNAs targeting the PI3K/Akt/mTOR pathway in this malignancy. Questions on how this axis is involved in the inhibition of apoptosis, in the induction of drug resistance, and the angiogenesis, epithelial to mesenchymal transition, and metastasis are also responded. We also discussed the PI3K/Akt pathway-associated prognostic and predictive biomarkers in CRC. In addition, we provide a general overview of PI3K/Akt/mTOR pathway inhibition whether by chemical-based drugs or by natural-based medications in the context of CRC, either as monotherapy or in combination with other therapeutic agents; however, those treatments might have life-threatening side effects and toxicities. To the best of our knowledge, the current review is one of the first ones highlighting the emerging roles of nanotechnology to overcome challenges related to CRC therapy in the hope that providing a promising platform for the treatment of CRC.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
15
|
Fiuji H, Nassiri M. Gene expression profiling of chromosome 10 in PTEN-knockout (−/−) human neural and mesenchymal stem cells: A system biology study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Wai Hon K, Zainal Abidin SA, Othman I, Naidu R. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism. Cancers (Basel) 2020; 12:cancers12092462. [PMID: 32878019 PMCID: PMC7565715 DOI: 10.3390/cancers12092462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
Collapse
|
17
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
18
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
19
|
Salvatore L, Calegari MA, Loupakis F, Fassan M, Di Stefano B, Bensi M, Bria E, Tortora G. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers (Basel) 2019; 11:1765. [PMID: 31717544 PMCID: PMC6896095 DOI: 10.3390/cancers11111765] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular assessment of colorectal cancer (CRC) is receiving growing attention, beyond RAS and BRAF, because of its influence on prognosis and prediction in cancer treatment. PTEN (phosphatase and tensin homologue), a tumor suppressor, regulating cell division and apoptosis, has been explored, and significant evidence suggests a role in cetuximab and panitumumab resistance linked to the epidermal growth factor receptor (EGFR) signal transduction pathway. Factors influencing PTEN activity should be analyzed to develop strategies to maximize the tumor suppressor role and to improve tumor response to cancer treatment. Therefore, an in-depth knowledge of the PI3K-Akt pathway-one of the major cancer survival pathways-and the role of PTEN-a major brake of this pathway-is essential in the era of precision medicine. The purpose of this literature review is to summarize the role of PTEN as a predictive factor and possible therapeutic target in CRC, focusing on ongoing studies and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Lisa Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Alessandra Calegari
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fotios Loupakis
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, 35128 Padua, Italy;
| | - Matteo Fassan
- Unit of Surgical Pathology, Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Brunella Di Stefano
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Bensi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.A.C.); (B.D.S.); (M.B.); (E.B.); (G.T.)
- Medical Oncology, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Curr Mol Pharmacol 2019; 12:281-300. [DOI: 10.2174/1874467212666190313154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
Background:Colorectal Cancer (CRC) is a common cause of oncological deaths worldwide. Alterations of the epigenetic landscape constitute a well-documented hallmark of CRC phenotype. The accumulation of aberrant DNA methylation and histone acetylation plays a major role in altering gene activity and driving tumor onset, progression and metastasis.Objective:In this study, we evaluated the effect of Suberoylanilide Hydroxamic Acid (SAHA), a panhistone deacetylase inhibitor, and Decitabine (DAC), a DNA methyltransferase inhibitor, either alone or in combination, on Caco-2 human colon cancer cell line in vitro.Results:Our results showed that SAHA and DAC, separately, significantly decreased cell proliferation, induced apoptosis and cell cycle arrest of Caco-2 cell line. On the other hand, the sequential treatment of Caco-2 cells, first with DAC and then with SAHA, induced a synergistic anti-tumor effect with a significant enhancement of growth inhibition and apoptosis induction in Caco-2 cell line as compared to cells treated with either drug alone. Furthermore, the combination therapy upregulates protein expression levels of pro-apoptotic proteins Bax, p53 and cytochrome c, downregulates the expression of antiapoptotic Bcl-2 protein and increases the cleavage of procaspases 8 and 9; this suggests that the combination activates apoptosis via both the intrinsic and extrinsic pathways. Mechanistically, we demonstrated that the synergistic anti-neoplastic activity of combined SAHA and DAC involves an effect on PI3K/AKT and Wnt/β-catenin signaling.Conclusion:In conclusion, our results provide evidence for the profound anti-tumorigenic effect of sequentially combined SAHA and DAC in the CRC cell line and offer new insights into the corresponding underlined molecular mechanism.
Collapse
Affiliation(s)
- Sonia Abou Najem
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
21
|
Zhang Y, Sui R, Chen Y, Liang H, Shi J, Piao H. Long noncoding RNA MT1JP inhibits proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway. J Cell Physiol 2019; 234:19553-19564. [PMID: 31066040 DOI: 10.1002/jcp.28553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
This study is carried out to elucidate the role of long noncoding RNAs (lncRNAs) MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells through the regulation of PTEN/Akt signaling pathway. The expression of MT1JP in 80 normal brain tissues and 138 glioma tissues, as well as glioma cell lines, was detected by quantitative reverse-transcription polymerase chain reaction. Besides, glioma cells with overexpression and low expression of MT1JP were constructed to confirm the role of MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells and the growth of glioma cells in vivo through the regulation of PTEN/Akt signaling pathway. MT1JP expression was downregulated in glioma tissues and cells. The low expression of MT1JP was considered as an independent risk factor for predicting overall survival in gliomas. After transfection of MT1JP overexpression plasmid, glioma cells showed decreased proliferation, migration and invasion ability, increased apoptosis rate, and decreased the tumorigenic ability of nude mice. The trends were opposite in glioma cells transfected with MT1JP poor expression plasmid. Collectively, our study suggests that lncRNA MT1JP is responsible for inhibiting proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Sui
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Chen
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hanyang Liang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ji Shi
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
22
|
Coronel-Hernández J, López-Urrutia E, Contreras-Romero C, Delgado-Waldo I, Figueroa-González G, Campos-Parra AD, Salgado-García R, Martínez-Gutierrez A, Rodríguez-Morales M, Jacobo-Herrera N, Terrazas LI, Silva-Carmona A, López-Camarillo C, Pérez-Plasencia C. Cell migration and proliferation are regulated by miR-26a in colorectal cancer via the PTEN-AKT axis. Cancer Cell Int 2019; 19:80. [PMID: 30983885 PMCID: PMC6444875 DOI: 10.1186/s12935-019-0802-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Invasion and metastasis are determinant events in the prognosis of Colorectal cancer (CRC), a common neoplasm worldwide. An important factor for metastasis is the acquired capacity of the cell to proliferate and invade adjacent tissues. In this paper, we explored the role of micro-RNA-26a in the regulation of proliferation and migration in CRC-derived cells through the negative regulation of PTEN, a key negative regulator of the AKT pathway. METHODS Expression levels of PTEN and mir-26a were surveyed in normal and CRC-derived cell lines; paraffin embedded human tissues, TCGA CRC expression data and a Balb/c mice orthotopic induced CRC model. CRC was induced by an initial intraperitoneal dose of the colonic carcinogen Azoxymethane followed by inflammatory promoter Dextran Sulfate Sodium Salt. Luciferase assays provide information about miR-26a-PTEN 3'UTR interaction. Proliferation and migration by real time cell analysis and wound-healing functional analyses were performed to assess the participation of mir-26a on important hallmarks of CRC and its regulation on the PTEN gene. RESULTS We observed a negative correlation between PTEN and mir-26a expression in cell lines, human tissues, TCGA data, and tissues derived from the CRC mouse model. Moreover, we showed that negative regulation of PTEN exerted by miR-26a affected AKT phosphorylation levels directly. Functional assays showed that mir-26a directly down-regulates PTEN, and that mir-26a over-expressing cells had higher proliferation and migration rates. CONCLUSIONS All this data proposes an important role of mir-26a as an oncomir in the progression and invasion of CRC. Our data suggested that mir-26a could be used as a biomarker of tumor development in CRC patients, however more studies must be conducted to establish its clinical role.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Carlos Contreras-Romero
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Izamary Delgado-Waldo
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| | - Alma D. Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| | - Rebeca Salgado-García
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| | - Antonio Martínez-Gutierrez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| | - Miguel Rodríguez-Morales
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición, Salvador Zubirán, Tlalpan, Mexico City, DF Mexico
| | - Luis Ignacio Terrazas
- Laboratorio de Inmunología de Parásitos, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Abraham Silva-Carmona
- Laboratorio de Genética, Genómica y Bioinformática, Hospital Infantil de México, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Zip code 14080 Mexico City, DF Mexico
| |
Collapse
|
23
|
Differential expression of tumor-associated genes and altered gut microbiome with decreased Akkermansia muciniphila confer a tumor-preventive microenvironment in intestinal epithelial Pten-deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3746-3758. [PMID: 30292635 DOI: 10.1016/j.bbadis.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Phosphatase and tensin homolog (Pten) antagonizes PI3K-Akt signaling; therefore, Pten impairment causes tumorigenesis. However, the correlation between Pten deficiency and colon cancer has remained elusive due to numerous opposite observations. To study this correlation, we examined whether Pten deficiency in intestinal epithelial cells (IECs) induces tumorigenesis. With mucosal biopsies of human colon cancer and normal colon, Pten mRNA was evaluated by quantitative PCR. Using IEC-specific Pten knockout mice (PtenΔIEC/ΔIEC), we examined the mitotic activity of IECs; and PtenΔIEC/ΔIEC; Apcmin/+ mice were generated by combining PtenΔIEC/ΔIEC with Apcmin/+ mice. Tumor-associated gene was evaluated by micro-array analysis. Fecal microbiome was analyzed through 16S rRNA gene sequencing. We found that Pten mRNA level was reduced in human colon cancer relative to normal tissues. Augmented chromatids, increased Ki-67 and PCNA expression, and enhanced Akt activation were identified in IECs of PtenΔIEC/ΔIEC mice compared to Pten+/+ littermate. Combining PtenΔIEC/ΔIEC with Apcmin/+ condition caused rapid and aggressive intestinal tumorigenesis. However, PtenΔIEC/ΔIEC mice did not develop any tumors. While maintaining the tumor-driving potential, these data indicated that IEC-Pten deficiency alone did not induce tumorigenesis in mice. Furthermore, the expression of tumor-promoting and tumor-suppressing genes was decreased and increased, respectively, in the intestine of PtenΔIEC/ΔIEC mice compared to controls. The abundance of Akkermansia muciniphila, capable of inducing chronic intestinal inflammation, was diminished in PtenΔIEC/ΔIEC mice compared to controls. These findings suggested that altered tumor-associated gene expression and changed gut microbiota shape a tumor-preventive microenvironment to counteract the tumor-driving potential, leading to the tumor prevention in PtenΔIEC/ΔIEC mice.
Collapse
|
24
|
Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review. Clin Epigenetics 2018; 10:35. [PMID: 29564023 PMCID: PMC5851322 DOI: 10.1186/s13148-018-0461-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Biomarkers that can predict the prognosis of colorectal cancer (CRC) patients and that can stratify high-risk early stage patients from low-risk early stage patients are urgently needed for better management of CRC. During the last decades, a large variety of prognostic DNA methylation markers has been published in the literature. However, to date, none of these markers are used in clinical practice. Methods To obtain an overview of the number of published prognostic methylation markers for CRC, the number of markers that was validated independently, and the current level of evidence (LoE), we conducted a systematic review of PubMed, EMBASE, and MEDLINE. In addition, we scored studies based on the REMARK guidelines that were established in order to attain more transparency and complete reporting of prognostic biomarker studies. Eighty-three studies reporting on 123 methylation markers fulfilled the study entry criteria and were scored according to REMARK. Results Sixty-three studies investigated single methylation markers, whereas 20 studies reported combinations of methylation markers. We observed substantial variation regarding the reporting of sample sizes and patient characteristics, statistical analyses, and methodology. The median (range) REMARK score for the studies was 10.7 points (4.5 to 17.5) out of a maximum of 20 possible points. The median REMARK score was lower in studies, which reported a p value below 0.05 versus those, which did not (p = 0.005). A borderline statistically significant association was observed between the reported p value of the survival analysis and the size of the study population (p = 0.051). Only 23 out of 123 markers (17%) were investigated in two or more study series. For 12 markers, and two multimarker panels, consistent results were reported in two or more study series. For four markers, the current LoE is level II, for all other markers, the LoE is lower. Conclusion This systematic review reflects that adequate reporting according to REMARK and validation of prognostic methylation markers is absent in the majority of CRC methylation marker studies. However, this systematic review provides a comprehensive overview of published prognostic methylation markers for CRC and highlights the most promising markers that have been published in the last two decades. Electronic supplementary material The online version of this article (10.1186/s13148-018-0461-8) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Roseweir AK, Powell AGMT, Bennett L, Van Wyk HC, Park J, McMillan DC, Horgan PG, Edwards J. Relationship between tumour PTEN/Akt/COX-2 expression, inflammatory response and survival in patients with colorectal cancer. Oncotarget 2018; 7:70601-70612. [PMID: 27661110 PMCID: PMC5342577 DOI: 10.18632/oncotarget.12134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
In patients with colorectal cancer (CRC), local and systemic inflammatory responses have been extensively reported to associate with cancer survival. However, the specific signalling pathways responsible for inflammatory responses are not clear. The PTEN/Akt pathway is a plausible candidate as it may play a role in mediating inflammation via COX-2, and has been associated with cancer progression. This study therefore examined the relationship between tumour PTEN/Akt/COX-2 expression, inflammatory responses and survival in CRC patients using a tissue microarray. In 201 CRC patients, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (12.0yrs v 7.3yrs, P=0.032), poorer differentiation (P=0.032), venous invasion (P=0.008) and peritoneal involvement (P=0.004). Patients were stratified for peri-nuclear expression of COX-2 to examine associations with inflammatory responses. In patients with absent peri-nuclear COX-2 expression, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (11.9yrs v 5.4yrs, P=0.001), poorer differentiation (P=0.018), venous invasion (P=0.003) and peritoneal involvement (P=0.001). However, no associations were seen with either the local or systemic inflammatory responses. In CRC patients, tumour-specific PTEN/Akt pathway activation was significantly associated with poorer CSS, particularly when peri-nuclear COX-2 expression was absent. However, activation of the PTEN/Akt pathway appears not to be responsible for the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Antonia K Roseweir
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom.,Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Arfon G M T Powell
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom.,Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Lindsay Bennett
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Hester C Van Wyk
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - James Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
26
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Xie H, Xie B, Liu C, Wang J, Xu Y. Association of PTEN expression with biochemical recurrence in prostate cancer: results based on previous reports. Onco Targets Ther 2017; 10:5089-5097. [PMID: 29123407 PMCID: PMC5661465 DOI: 10.2147/ott.s132653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Among men, prostate cancer (PCa) is one of the most commonly diagnosed cancers and the leading cause of cancer death worldwide. Phosphatase and tension homolog (PTEN) acts as a negative regulator of the phosphatidylinositol 3-kinase (PIK3)/Akt pathway and suppresses tumor progression. Meanwhile, PTEN is frequently deleted in PCa. Identifying the specific molecular markers of biochemical recurrence (BCR) in PCa patients is critical in clinical practice. Our systematic review summarizes the evidence about the PTEN expression and BCR rate in PCa patients. Methods To clarify the impact of PTEN expression on the PCa BCR rate, a systematic review and meta-analysis was performed by searching the PubMed, Embase, and Web of Science databases, to identify the relevant literature. The analysis of pooled data was performed with Stata 12. The combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were evaluated by the fixed-effects or random-effects models. The combined sensitivity and publication bias were also estimated. Results In total, nine articles containing ten independent cohort studies, including 2,154 cases with positive expression of PTEN and 1,006 PTEN deletion cases, were deemed eligible for the meta-analysis. Overall, the positive expression of PTEN was associated with a significantly lower BCR rate (OR =0.521, 95% CI: 0.431–0.630). Subgroup analysis stratified by race revealed that in multiple races (OR =0.215, 95% CI: 0.072–0.648) and Caucasian (OR =0.469, 95% CI: 0.373–0.591) races, positive expression of PTEN showed a significant association with lower BCR rate. Subgroup analysis also showed the significant result in different sample sizes. Conclusion PTEN deletion has a relationship with a higher BCR rate in PCa compared with positive expression of PTEN.
Collapse
Affiliation(s)
- Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Bin Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Jun Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
28
|
SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway. J Neurooncol 2017; 135:263-272. [PMID: 28887597 PMCID: PMC5663806 DOI: 10.1007/s11060-017-2589-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Spalt-like transcription factor 4 (SALL4), a oncogene, is known to participate in multiple carcinomas, and is up-regulated in glioma. However, its actual role and underlying mechanisms in the development of glioma remain unclear. The present study explored the molecular functions of SALL4 in promoting cell proliferation in glioma. The expression level of SALL4 in 69 human glioma samples and six non-tumor brain tissues was determined using real-time polymerase chain reaction (PCR). Then, we transfected U87 and U251 cell lines with siRNA, and assessed cellular proliferation and cell cycle to understand the function of SALL4, and the relationship between SALL4, PTEN and PI3K/AKT pathway. PCR confirmed that the expression of SALL4 was higher in the glioma samples than non-tumor brain tissues. Cellular growth and proliferation were dramatically reduced following inhibition of SALL4 expression. Western blot showed increase in PTEN expression when SALL4 was silenced, which in turn depressed the activation of PI3K/AKT pathway, suggesting that PTEN was a downstream target of SALL4 in glioma development. Therefore, SALL4 could act as a proto-oncogene by regulating the PTEN/PI3K/AKT signaling pathway, thereby facilitating proliferation of glioma cells.
Collapse
|
29
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
- Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Nowak JA, Hornick JL. Molecular Evaluation of Colorectal Adenocarcinoma: Current Practice and Emerging Concepts. Surg Pathol Clin 2017; 9:427-39. [PMID: 27523970 DOI: 10.1016/j.path.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular testing in colorectal cancer helps to address multiple clinical needs. Evaluating the mismatch repair pathway status is the most common use for molecular diagnostics and this testing provides prognostic information, guides therapeutic decisions and helps identify Lynch syndrome patients. For patients with metastatic colorectal cancer, testing for activating mutations in downstream components of the EGFR signaling pathway can identify patients who will benefit from anti-EGFR therapy. Emerging molecular tests for colorectal cancer will help further refine patient selection for targeted therapies and may provide new options for monitoring disease recurrence and the development of treatment resistance.
Collapse
Affiliation(s)
- Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
31
|
Zhou L, Jiang F, Chen X, Liu Z, Ouyang Y, Zhao W, Yu D. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 2016; 12:4419-4426. [PMID: 28101204 PMCID: PMC5228168 DOI: 10.3892/ol.2016.5250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-221 and microRNA-222 (miR-221/222) have been identified as oncogenes and confirmed to be overexpressed in various types of cancer. However, the regulation mechanism of miR-221/222 in oral squamous cell carcinoma (OSCC) remains to be fully elucidated. Previously, an miR-221/222 sponge was successfully constructed and its effect on the downregulation of miR-221/222 expression was investigated. In the present study, the dual luciferase reporter assay revealed a phosphatase and tensin homolog (PTEN) deletion on chromosome 10 to be a target gene of miR-221/222. It was also demonstrated that miR-221/222 suppression by transfection with an miR-221/222 sponge in vitro resulted in upregulation of PTEN. Notably, the proliferation and invasiveness of the miR-221/222 sponge-transfected cells was significantly inhibited, while apoptosis was promoted, when determined by Cell Counting Kit-8, Transwell assays and flow cytometry. The results of the present study prove that miR-221/222 may downregulate the expression of PTEN in OSCC cells and function as oncogenes, providing a novel insight into the underlying mechanism of OSCC tumorigenesis. The present study suggests that upregulating the expression of PTEN by downregulation of miR-221/222 may be a potential treatment for OSCC.
Collapse
Affiliation(s)
- Lijie Zhou
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China; Department of Stomatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fangfang Jiang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xijuan Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zifeng Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ying Ouyang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Wei Zhao
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
32
|
Luo S, Chen J, Mo X. The association of PTEN hypermethylation and breast cancer: a meta-analysis. Onco Targets Ther 2016; 9:5643-5650. [PMID: 27672335 PMCID: PMC5026181 DOI: 10.2147/ott.s111684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Phosphatase and tensin homolog (PTEN) deleted on chromosome 10, as a tumor suppressor gene, is crucial for the development of both familial and sporadic breast cancer (BC). The aim of this study was to perform a meta-analysis to evaluate the clinicopathological significance of PTEN promoter hypermethylation in BC. METHODS A comprehensive literature search was made in PubMed, Embase, Google Scholar, Chinese database (China National Knowledge Infrastructure [CNKI]), and Web of Science. The analysis of pooled data was performed with Review Manager 5.2. The fixed-effects or random-effects models were used to evaluate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The meta-analysis included eight studies and a total of 923 patients. The frequency of PTEN promoter hypermethylation was significantly increased in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) compared to normal breast tissues (OR =22.53, P=0.0002 and OR =22.86, P<0.00001, respectively). However, the frequency of PTEN promoter hypermethylation was similar between IDC and DCIS. Additionally, PTEN methylation was not significantly correlated to estrogen receptor (ER) or human epidermal growth factor type 2 (HER-2) status in patients with BC. CONCLUSION PTEN promoter hypermethylation is significantly associated with the risk of DCIS and IDC, suggesting PTEN promoter hypermethylation is a valuable biomarker for diagnosis of BC.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Gastrointestinal Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
33
|
Application of next-generation sequencing in gastrointestinal and liver tumors. Cancer Lett 2016; 374:187-91. [PMID: 26916979 DOI: 10.1016/j.canlet.2016.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Malignant transformation of normal cells is associated with the evolution of genomic alterations. This concept has led to the development of molecular testing platforms to identify genomic alterations that can be targeted with novel therapies. Next generation sequencing (NGS) has heralded a new era in precision medicine in which tumor genes can be studied efficiently. Recent developments in NGS have allowed investigators to identify genomic predictive makers and hereditary mutations to guide treatment decision. The application of NGS in gastrointestinal cancers is being extensively studied but continues to face substantial challenges. In our review, we discuss various NGS platforms and highlight their role in identifying familial mutations and markers of response or resistance to cancer therapy. We also provide a balanced discussion of the challenges that limit the routine use of NGS in clinical practice.
Collapse
|
34
|
Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med 2016; 14:21. [PMID: 26801617 PMCID: PMC4722674 DOI: 10.1186/s12967-016-0772-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The huge part of population in developed countries is overweight or obese. Obesity is often determined by body mass index (BMI) but new accurate methods and ratios have recently appeared to measure body fat or fat located in the intestines. Early diagnosis of obesity is crucial since it is considered an increasing colorectal cancer risk factor. On the one hand, colorectal cancer has been strongly associated with lifestyle factors. A diet rich in red and processed meats may increase colorectal cancer risk; however, high-fiber diets (grains, cereals and fruits) have been associated with a decreased risk of colorectal cancer. Other life-style factors associated with obesity that also increase colorectal cancer risk are physical inactivity, smoking and high alcohol intake. Cutting-edge studies reported that high-risk transformation ability of adipose tissue is due to production of different pro-inflammatory cytokines like IL-8, IL-6 or IL-2 and other enzymes like lactate dehydrogenase (LDH) and tumour necrosis factor alpha (TNFα). Furthermore, oxidative stress produces fatty-acid peroxidation whose metabolites possess very high toxicities and mutagenic properties. 4-hydroxy-2-nonenal (4-HNE) is an active compounds that upregulates prostaglandin E2 which is directly associated with high proliferative colorectal cancer. Moreover, 4-HNE deregulates cell proliferation, cell survival, differentiation, autophagy, senescence, apoptosis and necrosis via mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PIK3CA)—AKT and protein kinase C pathways. Other product of lipid peroxidation is malondialdehyde (MDA) being able to regulate insulin through WNT-pathway as well as having demonstrated its mutagenic capability. Accumulation of point mutation enables genomic evolution of colorectal cancer described in the model of Fearon and Vogelstein. In this review, we will summarize different determination methods and techniques to assess a truthfully diagnosis and we will explain some of the capabilities that performs adipocytes as the largest endocrine organ.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| |
Collapse
|
35
|
Lin L, Zhang Z, Zhang W, Wang L, Wang J. Roles of genetic variants in the PI3K/PTEN pathways in susceptibility to colorectal carcinoma and clinical outcomes treated with FOLFOX regimen. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13314-13322. [PMID: 26722535 PMCID: PMC4680480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED The genetic or abnormal activation of PI3K/PTEN signaling pathway play an important role with regard to disease progression in variety of human malignancies. Experimental and epidemiologic studies indicated that the genetic polymorphisms in the PTEN, PI3K genes are associated with cancer risk, yet little evidence exists for those 2 genes and colorectal cancer (CRC) risk. To address this, we evaluated whether PTEN rs701848, PIK3CA rs2699887 variants are associated with CRC susceptibility, clinicopathological parameters and clinical outcomes in CRC patients treated with FOLFOX (Oxaliplatin, Leucovorin, 5-Fluorouracil) regimen. A case-control study was performed in 780 CRC patients and 764 healthy controls using the TaqMan assay method. A significant increased risk of CRC was observed in patients carrying PTEN rs701848 TC or CC genotype (adjusted OR=1.306, 95% CI=1.030-1.655, P=0.027; adjusted OR=1.543, 95% CI=1.148-2.075, P=0.004, respectively), TC/CC genotype (adjusted OR=1.367, 95% CI=1.090-1.714, P=0.043) in the dominant model, and C allele (adjusted OR=1.229, 95% CI=1.067-1.416, P=0.004). However, no association was detected between rs2699887 in the PIK3CA gene and CRC risk. A significant association was found between pathological grade (Dukes A and B vs. Dukes C and D) and PIK3CA rs2699887 genotypes. Furthermore, Kaplan-Meier analysis revealed that PTEN rs701848 genotypes were significantly associated with the overall survival (OS) of CRC patients treated with FOLFOX regimen (n=780). Individuals carrying PTEN rs701848 TC or TC/CC genotypes showed significantly longer median survival time (MST) than TT genotype and significant hazard ratio (TC: adjusted HR=0.523, 95% CI=0.325-0.840, P=0.007; TC/CC adjusted HR=0.545, 95% CI=0.351-0.845, P=0.007). Therefore, rs701848 polymorphism in the PTEN gene is associated with susceptibility to CRC, and C allele of rs701848 showed significant independent better prognosis of CRC patients treated with FOLFOX regimen. These results indicate that rs701848 in the PTEN gene might be a candidate pharmacogenomic factor to assess the susceptibility and prognosis in CRC patients.
Collapse
Affiliation(s)
- Lin Lin
- Department of Medical Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Science, Peking Union Medical CollegeBeijing 100021, China
| | - Zhaoxu Zhang
- Department of Abdominal Surgery, Cancer Hospital (Institute), Chinese Academy of Medical Science, Peking Union Medical CollegeBeijing 100021, China
| | - Wen Zhang
- Department of Medical Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Science, Peking Union Medical CollegeBeijing 100021, China
| | - Lin Wang
- Department of Medical Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Science, Peking Union Medical CollegeBeijing 100021, China
| | - Jinwan Wang
- Department of Medical Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Science, Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|