1
|
Jiang Z, Zhang J, Qiu Z, Zhang Y, Li N, Hu J, Zhu Z. Single-cell sequencing in non-obstructive azoospermia: insights from primary and re-analysis studies. Front Endocrinol (Lausanne) 2025; 16:1539063. [PMID: 40177631 PMCID: PMC11961434 DOI: 10.3389/fendo.2025.1539063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Non-obstructive azoospermia (NOA) constitutes one of the most severe forms of male infertility. Recent advancements in single-cell sequencing have significantly contributed to understanding the molecular landscape of NOA in human testicular tissues, elucidating the factors that underpin spermatogenic dysfunction. This technology has improved our understanding of the condition at a cellular level. Concurrently, bioinformatics developments have facilitated the re-analysis of publicly available single-cell datasets, offering novel insights into the disorder. Nevertheless, a comprehensive review integrating primary and re-analysis studies of single-cell sequencing in NOA is lacking. This review systematically evaluates 10 primary studies reporting original single-cell sequencing data of human NOA testicular samples and 22 secondary studies that re-analyzed these published data. We explore single-cell sequencing applications in germ cells, Sertoli cells, and Leydig cells, offering a comprehensive overview of molecular insights into spermatogenic dysfunction. Our review highlights novel findings in secondary studies, including the roles of transcriptional regulators, RNA transcription, endocrine disruptors, and microtubular cytoskeleton, thereby bridging primary studies and re-analysis studies. Additionally, we discussed future research directions and the challenges of translating single-cell research findings into clinical applications. In summary, single-cell sequencing offers a high-resolution, single-cell perspective of NOA testicular tissue, paving the way for innovative therapeutic strategies in male infertility.
Collapse
Affiliation(s)
- Zesong Jiang
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Junwen Zhang
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhongjian Qiu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yufei Zhang
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Nan Li
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jianmeng Hu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhiguo Zhu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Hashemi Karoii D, Azizi H, Darvari M, Qorbanee A, Hawezy DJ. Identification of novel cytoskeleton protein involved in spermatogenic cells and sertoli cells of non-obstructive azoospermia based on microarray and bioinformatics analysis. BMC Med Genomics 2025; 18:19. [PMID: 39863862 PMCID: PMC11762539 DOI: 10.1186/s12920-025-02087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis. METHODS The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes). To validate these findings, we cross-referenced our results with data from a single-cell genomics database. RESULTS In the microarray analyses of three human cases with different NOA spermatogenic cells, the expression of TBL3, MAGEA8, KRTAP3-2, KRT35, VCAN, MYO19, FBLN2, SH3RF1, ACTR3B, STRC, THBS4, and CTNND2 were upregulated, while expression of NTN1, ITGA1, GJB1, CAPZA1, SEPTIN8, and GOLGA6L6 were downregulated. There was an increase in KIRREL3, TTLL9, GJA1, ASB1, and RGPD5 expression in the Sertoli cells of three human cases with NOA, whereas expression of DES, EPB41L2, KCTD13, KLHL8, TRIOBP, ECM2, DVL3, ARMC10, KIF23, SNX4, KLHL12, PACSIN2, ANLN, WDR90, STMN1, CYTSA, and LTBP3 were downregulated. A combined analysis of Gene Ontology (GO) and STRING, were used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP) mitotic cytokinesis, cytoskeleton-dependent cytokinesis, and positive regulation of cell-substrate adhesion were significantly associated with differentially expressed genes (DEGs) in spermatogenic cells. Moleculare function (MF) of DEGs that were up/down regulated, it was found that tubulin bindings, gap junction channels, and tripeptide transmembrane transport were more significant in our analysis. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. Cell-cell junction assembly, cell-matrix adhesion, and regulation of SNARE complex assembly were significantly correlated with common DEGs for BP. In the study of MF, U3 snoRNA binding, and cadherin binding were significantly associated with common DEGs. CONCLUSION Our analysis, leveraging single-cell data, substantiated our findings, demonstrating significant alterations in gene expression patterns.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Darvari
- Department of Cellular and Molecular Biology, Islamic Azad University, Ghaemshahr branch, Ghaemshahr, Iran
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Koya KOY45, Iran
| | - Ali Qorbanee
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| | - Dawan Jamal Hawezy
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| |
Collapse
|
3
|
Wu X, Lu M, Yun D, Gao S, Sun F. Long-read single-cell sequencing reveals the transcriptional landscape of spermatogenesis in obstructive azoospermia and Sertoli cell-only patients. QJM 2024; 117:422-435. [PMID: 38192002 DOI: 10.1093/qjmed/hcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND High-throughput single-cell RNA sequencing (scRNA-seq) is widely used in spermatogenesis. However, it only reveals short reads in germ and somatic cells, limiting the discovery of novel transcripts and genes. AIM This study shows the long-read transcriptional landscape of spermatogenesis in obstructive azoospermia (OA) and Sertoli cell-only patients. DESIGN Single cells were isolated from testicular biopsies of OA and non-obstructive azoospermia (NOA) patients. Cell culture was identified by comparing PacBio long-read single-cell sequencing (OA n = 3, NOA n = 3) with short-read scRNA-seq (OA n = 6, NOA n = 6). Ten germ cell types and eight somatic cell types were classified based on known markers. METHODS PacBio long-read single-cell sequencing, short-read scRNA-seq, polymerase chain reaction. RESULTS A total of 130 426 long-read transcripts (100 517 novel transcripts and 29 909 known transcripts) and 49 508 long-read transcripts (26 002 novel transcripts and 23 506 known transcripts) have been detected in OA and NOA patients, respectively. Moreover, 36 373 and 1642 new genes are identified in OA and NOA patients, respectively. Importantly, specific expressions of long-read transcripts were detected in germ and stomatic cells during normal spermatogenesis. CONCLUSION We have identified total full-length transcripts in OA and NOA, and new genes were found. Furthermore, specific expressed full-length transcripts were detected, and the genomic structure of transcripts was mapped in different cell types. These findings may provide valuable information on human spermatogenesis and the treatment of male infertility.
Collapse
Affiliation(s)
- X Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - M Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - S Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - F Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Chan CC, Yen TH, Tseng HC, Mai B, Ho PK, Chou JL, Wu GJ, Huang YC. A Comprehensive Genetic Study of Microtubule-Associated Gene Clusters for Male Infertility in a Taiwanese Cohort. Int J Mol Sci 2023; 24:15363. [PMID: 37895049 PMCID: PMC10607339 DOI: 10.3390/ijms242015363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced reproductive technologies are utilized to identify the genetic mutations that lead to spermatogenic impairment, and allow informed genetic counseling to patients to prevent the transmission of genetic defects to offspring. The purpose of this study was to identify potential single nucleotide polymorphisms (SNPs) associated with male infertility. Genetic variants that may cause infertility are identified by combining the targeted next-generation sequencing (NGS) panel and whole exome sequencing (WES). The validation step of Sanger sequencing adds confidence to the identified variants. Our analysis revealed five distinct affected genes covering seven SNPs based on the targeted NGS panel and WES data: SPATA16 (rs16846616, 1515442, 1515441), CFTR (rs213950), KIF6 (rs2273063), STPG2 (r2903150), and DRC7 (rs3809611). Infertile men have a higher mutation rate than fertile men, especially those with azoospermia. These findings strongly support the hypothesis that the dysfunction of microtubule-related and spermatogenesis-specific genes contributes to idiopathic male infertility. The SPATA16, CFTR, KIF6, STPG2, and DRC7 mutations are associated with male infertility, specifically azoospermia, and a further examination of this genetic function is required.
Collapse
Affiliation(s)
- Chying-Chyuan Chan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Department of Obstetrics and Gynecology, Taipei City Hospital-Renai Branch, Taipei 103212, Taiwan
| | - Te-Hsin Yen
- Department of Obstetrics and Gynecology, Taipei City Hospital-Renai Branch, Taipei 103212, Taiwan
| | - Hao-Chen Tseng
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Brang Mai
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 114201, Taiwan
| | - Jian-Liang Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Department of Research and Development, National Defense Medical Center, Taipei 114201, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Yu-Chuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|