1
|
徐 雨, 胡 群. [Advances in the diagnosis and treatment of thrombocytosis in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2025; 27:236-241. [PMID: 39962789 PMCID: PMC11838038 DOI: 10.7499/j.issn.1008-8830.2408066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 02/21/2025]
Abstract
Thrombocytosis is a common condition in children, classified into primary and secondary types. Secondary thrombocytosis is mainly caused by factors such as infection, anemia, iron deficiency, trauma, or surgical intervention, and it typically occurs without severe thrombosis or bleeding events. Platelet counts can return to normal after control of the primary factors, with favorable clinical outcomes. Primary thrombocytosis is mainly caused by myeloproliferative neoplasms such as polycythemia vera, essential thrombocythemia, and myelofibrosis, often accompanied by gene mutations in hematopoietic cells. In children, clinical manifestations are atypical compared to adults, with few thromboembolic or bleeding events. No special treatment is required for patients who are asymptomatic or have mild symptoms, and it is recommended to regularly monitor platelet counts. Antiplatelet therapy with aspirin can be considered for patients at risk of thrombosis or those with extreme thrombocytosis, and cytoreductive therapy can be performed when necessary, but the toxicities and side effects of drugs should be closely monitored. At present, hydroxyurea, interferon-alpha, and anagrelide are commonly used for cytoreductive therapy. This article provides an overview of the etiology, classification, clinical manifestations, diagnosis, and treatment of childhood thrombocytosis to guide healthcare professionals in treatment decisions.
Collapse
|
2
|
Shibuta T, Takada Y, Nishinosono S, Yasuda S, Ono Y, Hirooka Y, Irikura D, Saito K, Umemura T. Disease-specific signatures of circulating extracellular vesicles detected by the surface plasmon resonance imaging: a pilot study. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:36-53. [PMID: 40206804 PMCID: PMC11977349 DOI: 10.20517/evcna.2024.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 04/11/2025]
Abstract
Aim: Cells in the human body release extracellular vesicles (EVs) into fluids, such as plasma, urine, and cerebrospinal fluid. EVs express tetraspanin family proteins (e.g., CD63, CD9, and CD81) and cell-specific antigens on their surface as common and specific markers, respectively. In this study, we hypothesized that the profile of blood cell-derived circulating EVs could reveal both common and specific pathophysiology in atherogenic diseases. Methods: Using surface plasmon resonance imaging (SPRi), we analyzed EVs surface molecules and identified circulating EVs in healthy controls (n = 18), patients with type 2 diabetes mellitus (T2DM; n = 71), and those with hypertension (HT; n = 47). Results: Patients with T2DM and HT exhibited distinct EV profiles: (i) CD9, CD110, CD20, activin receptor type-2A (AcvRIIA), Duffy antigen receptor for chemokine, and CD44 positive EVs were upregulated in T2DM; (ii) CD9, Maackia amurensis agglutinin lectin binding molecules (MBM), CD20, AcvRIIA, and CD44 positive EVs were upregulated in HT. By analyzing an appropriate set of three antigens or using dimensional reduction clustering, we were able to clearly differentiate between T2DM, HT, and control groups. In some patients, disease severity correlated with CD44 and CD20 in T2DM and MBM and AcvRIIA in HT. Conclusion: Our findings demonstrate that profiling of circulating EVs via the SPRi method offers a novel approach for diagnosing and monitoring human diseases.
Collapse
Affiliation(s)
- Tatsuki Shibuta
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
| | - Yukichi Takada
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
| | - Shiori Nishinosono
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
| | - Seiko Yasuda
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
| | - Yasuhiro Ono
- Department of Diabetes and Metabolism, Kouhoukai Takagi Hospital, Fukuoka 831-0016, Japan
| | - Yoshitaka Hirooka
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
- Hypertension and Heart Failure Center, Kouhoukai Takagi Hospital, Fukuoka 831-0016, Japan
- Graduate School, International University of Health and Welfare, Fukuoka 831-8501, Japan
| | | | | | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka 831-8501, Japan
- Graduate School, International University of Health and Welfare, Fukuoka 831-8501, Japan
| |
Collapse
|
3
|
Wood TR, Kucinski I, Voiculescu O. Distinct molecular profile of the chick organizer as a stem zone during axial elongation. Open Biol 2024; 14:240139. [PMID: 38955223 PMCID: PMC11519809 DOI: 10.1098/rsob.240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.
Collapse
Affiliation(s)
- Timothy R. Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, UK
| | - Iwo Kucinski
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, UK
| | - Octavian Voiculescu
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, UK
| |
Collapse
|
4
|
Gao A, Zhang L, Zhong D. Chemotherapy-induced thrombocytopenia: literature review. Discov Oncol 2023; 14:10. [PMID: 36695938 PMCID: PMC9877263 DOI: 10.1007/s12672-023-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a common condition that frequently results in reduced chemotherapy dosages, postponed treatment, bleeding, and unfavorable oncological outcomes. At present, there is no clear suggestions for preventing or treating CIT. Thrombopoietin (TPO) replacement therapy has been invented and used to treat CIT to promote the production of megakaryocytes and stimulate the formation of platelets. However, this treatment is limited to the risk of immunogenicity and cancer progression. Therefore, an unmet need exists for exploring alternatives to TPO to address the clinical issue of CIT. Application of appropriate therapeutic drugs may be due to understanding the potential mechanisms of CIT. Studies have shown that chemotherapy significantly affects various cells in bone marrow (BM) microenvironment, reduces their ability to support normal hematopoiesis, and may lead to BM damage, including CIT in cancer patients. This review focuses on the epidemiology and treatment of cancer patients with CIT. We also introduce some recent progress to understand the cellular and molecular mechanisms of chemotherapy inhibiting normal hematopoiesis and causing thrombocytopenia.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China.
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, No.154, Anshandao, Heping District, Tianjin, 300052, China
| |
Collapse
|
5
|
Xie S, Jiang C, Wu M, Ye Y, Wu B, Sun X, Lv X, Chen R, Yu W, Sun Q, Wu Y, Que R, Li H, Yang L, Liu W, Zuo J, Jensen LD, Huang G, Cao Y, Yang Y. Dietary ketone body-escalated histone acetylation in megakaryocytes alleviates chemotherapy-induced thrombocytopenia. Sci Transl Med 2022; 14:eabn9061. [PMID: 36449600 DOI: 10.1126/scitranslmed.abn9061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a severe complication in patients with cancer that can lead to impaired therapeutic outcome and survival. Clinically, therapeutic options for CIT are limited by severe adverse effects and high economic burdens. Here, we demonstrate that ketogenic diets alleviate CIT in both animals and humans without causing thrombocytosis. Mechanistically, ketogenic diet-induced circulating β-hydroxybutyrate (β-OHB) increased histone H3 acetylation in bone marrow megakaryocytes. Gain- and loss-of-function experiments revealed a distinct role of 3-β-hydroxybutyrate dehydrogenase (BDH)-mediated ketone body metabolism in promoting histone acetylation, which promoted the transcription of platelet biogenesis genes and induced thrombocytopoiesis. Genetic depletion of the megakaryocyte-specific ketone body transporter monocarboxylate transporter 1 (MCT1) or pharmacological targeting of MCT1 blocked β-OHB-induced thrombocytopoiesis in mice. A ketogenesis-promoting diet alleviated CIT in mouse models. Moreover, a ketogenic diet modestly increased platelet counts without causing thrombocytosis in healthy volunteers, and a ketogenic lifestyle inversely correlated with CIT in patients with cancer. Together, we provide mechanistic insights into a ketone body-MCT1-BDH-histone acetylation-platelet biogenesis axis in megakaryocytes and propose a nontoxic, low-cost dietary intervention for combating CIT.
Collapse
Affiliation(s)
- Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Chenyu Jiang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Wu
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Ying Ye
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoting Sun
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325024, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ruibo Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Yu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Sun
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuting Wu
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Rongliang Que
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Huilan Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lasse D Jensen
- Department of Health, Medical and Caring Sciences, Division of Cardiovascular Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing 200002, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Alsayejh B, Kietsiriroje N, Almutairi M, Simmons K, Pechlivani N, Ponnambalam S, Ajjan RA. Plasmin Inhibitor in Health and Diabetes: Role of the Protein as a Therapeutic Target. TH OPEN 2022; 6:e396-e407. [PMID: 36452200 PMCID: PMC9674435 DOI: 10.1055/a-1957-6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The vascular obstructive thrombus is composed of a mesh of fibrin fibers with blood cells trapped in these networks. Enhanced fibrin clot formation and/or suppression of fibrinolysis are associated with an increased risk of vascular occlusive events. Inhibitors of coagulation factors and activators of plasminogen have been clinically used to limit fibrin network formation and enhance lysis. While these agents are effective at reducing vascular occlusion, they carry a significant risk of bleeding complications. Fibrin clot lysis, essential for normal hemostasis, is controlled by several factors including the incorporation of antifibrinolytic proteins into the clot. Plasmin inhibitor (PI), a key antifibrinolytic protein, is cross-linked into fibrin networks with higher concentrations of PI documented in fibrin clots and plasma from high vascular risk individuals. This review is focused on exploring PI as a target for the prevention and treatment of vascular occlusive disease. We first discuss the relationship between the PI structure and antifibrinolytic activity, followed by describing the function of the protein in normal physiology and its role in pathological vascular thrombosis. Subsequently, we describe in detail the potential use of PI as a therapeutic target, including the array of methods employed for the modulation of protein activity. Effective and safe inhibition of PI may prove to be an alternative and specific way to reduce vascular thrombotic events while keeping bleeding risk to a minimum. Key Points Plasmin inhibitor (PI) is a key protein that inhibits fibrinolysis and stabilizes the fibrin network.This review is focused on discussing mechanistic pathways for PI action, role of the molecule in disease states, and potential use as a therapeutic target.
Collapse
Affiliation(s)
- Basmah Alsayejh
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- Ministry of Education, Riyadh, Kingdom of Saudi Arabia
| | - Noppadol Kietsiriroje
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Mansour Almutairi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
- General Directorate of Medical Services, Ministry of Interior, Kingdom of Saudi Arabia
| | - Katie Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| | - Nikoletta Pechlivani
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
| |
Collapse
|
7
|
Rommel MG, Walz L, Fotopoulou F, Kohlscheen S, Schenk F, Miskey C, Botezatu L, Krebs Y, Voelker IM, Wittwer K, Holland-Letz T, Ivics Z, von Messling V, Essers MA, Milsom MD, Pfaller CK, Modlich U. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep 2022; 41:111447. [DOI: 10.1016/j.celrep.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
8
|
Xu WH, Mo LC, Shi MH, Rao H, Zhan XY, Yang M. Correlation between thrombopoietin and inflammatory factors, platelet indices, and thrombosis in patients with sepsis: A retrospective study. World J Clin Cases 2022; 10:4072-4083. [PMID: 35665097 PMCID: PMC9131241 DOI: 10.12998/wjcc.v10.i13.4072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Thrombopoietin (TPO) is a primary regulator of thrombopoiesis in physiological conditions. TPO, in combination with its specific cytokine receptor c-Mpl, drives platelet production by inducing the proliferation and differentiation of megakaryocytes. However, the role of TPO in sepsis is not well determined. The elevated levels of TPO are often accompanied by a decrease of platelet count (PLT) in systemic infected conditions, which is contrary to the view that TPO promotes platelet production under physiological conditions. In addition, whether TPO mediates organ damage in sepsis remains controversial.
AIM To explore the relationships between TPO and inflammatory factors, platelet indices, and thrombotic indicators in sepsis.
METHODS A total of 90 patients with sepsis diagnosed and treated at the emergency medicine department of The First People’s Hospital of Foshan between January 2020 and March 2021 were enrolled in this study. In addition, 110 patients without sepsis who came to the emergency medicine department were included as controls. Clinical and laboratory parameters including age, gender, TPO, blood cell count in peripheral blood, platelet indices, inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-21, and IL-6, organ damage indicators, and thrombotic indicators were collected and analyzed by using various statistical approaches.
RESULTS The results showed that the TPO levels were higher in the sepsis group than in controls [86.45 (30.55, 193.1) vs 12.45 (0.64, 46.09) pg/mL, P < 0.001], but PLT was lower (P < 0.001). Multivariable analysis showed that white blood cell count (WBC) [odds ratio (OR) = 1.32; 95% confidence interval (CI): 1.01-1.722; P = 0.044], TPO (OR = 1.02; 95%CI: 1.01-1.04; P = 0.009), IL-21 (OR = 1.02; 95%CI: 1.00-1.03; P = 0.019), troponin I (OR = 55.20; 95%CI: 5.69-535.90; P = 0.001), and prothrombin time (PT) (OR = 2.24; 95%CI: 1.10-4.55; P = 0.027) were independent risk factors associated with sepsis. TPO levels were positively correlated with IL-21, IL-6, hs-CRP, creatinine, D-dimer, PT, activated prothrombin time, international normalized ratio, fibrinogen, WBC count, and neutrophil count, and negatively correlated with PLT, thrombin time, red blood cell count, and hemoglobin concentration (P < 0.05). Receiver operating characteristic analysis showed that TPO had fair predictive value in distinguishing septic patients and non-septic patients (the area under the curve: 0.788; 95%CI: 0.723-0.852; P < 0.001). With an optimized cutoff value (28.51 pg/mL), TPO had the highest sensitivity (79%) and specificity (65%).
CONCLUSION TPO levels are independently associated with sepsis. High TPO levels and low PLT suggest that TPO might be an acute-phase response protein in patients with infection.
Collapse
Affiliation(s)
- Wan-Hua Xu
- Department of Hematology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Emergency Medicine, The First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Li-Chan Mo
- Department of Emergency Medicine, The First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
- Department of Emergency Medicine, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Mao-Hua Shi
- Department of Rheumatology and Immunology, The First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Hui Rao
- Department of Emergency Medicine, The First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Xiao-Yong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Mo Yang
- Department of Hematology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
9
|
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022; 139:907-921. [PMID: 34601571 PMCID: PMC8832475 DOI: 10.1182/blood.2021013156] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.
Collapse
|
10
|
Essential Thrombocythemia in Children and Adolescents. Cancers (Basel) 2021; 13:cancers13236147. [PMID: 34885256 PMCID: PMC8656963 DOI: 10.3390/cancers13236147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Among chronic Ph-negative myeloproliferative neoplasms, essential thrombocythemia is found in children with low but increasing incidence. The diagnostic and clinical features do not completely overlap with ET of adult age. A significant number of cases, in fact, do not meet the criteria of clonality, and many cases require extensive clinical evaluation to exclude secondary, reactive forms. Therefore, histological analysis of bone marrow biopsy is necessary, and its use should be enforced. The clinical course appears to be more benign, at least within the first decades of observation, with the incidence of thrombotic events being much lower than in adults (4 % vs. 30%). Hemorrhages are mostly irrelevant. Therefore, the management should be carefully adapted to the individual patient, balancing the risk of future complications with long-term collateral effects of any drug. This review analyzes the peculiarities of the disease facing similarities and differences with adult scenarios. Abstract This paper reviews the features of pediatric essential thrombocythemia (ET). ET is a rare disease in children, challenging pediatric and adult hematologists alike. The current WHO classification acknowledges classical Philadelphia-negative MPNs and defines diagnostic criteria, mainly encompassing adult cases. The presence of one of three driver mutations (JAK2V617F, CALR, and MPL mutations) represent the proof of clonality typical of ET. Pediatric ET cases are thus usually confronted by adult approaches. These can fit only some patients, because only 25–40% of cases present one of the driver mutations. The diagnosis of hereditary, familial thrombocytosis and the exclusion of reactive/secondary thrombocytosis must be part of the diagnostic process in children and can clarify most of the negative cases. Still, many children present a clinical, histological picture of ET, with a molecular triple wild-type status. Moreover, prognosis seems more benign, at least within the first few decades of follow-up. Thrombotic events are rare, and only minor hemorrhages are ordinarily observed. As per the management, the need to control symptoms must be balanced with the collateral effects of lifelong drug therapy. We conclude that these differences concert a compelling case for a very careful therapeutic approach and advocate for the importance of further cooperative studies.
Collapse
|
11
|
Liu X, Shi H, Shen J, Li Y, Yan W, Sun Y, Liao A, Tan Y, Yang W, Wang H. Dual Growth Factor (rhTPO + G-CSF) and Chemotherapy Combination Regimen for Elderly Patients with Acute Myeloid Leukemia: A Phase II Single-Arm Multicenter Study. Int J Gen Med 2021; 14:6093-6099. [PMID: 34611424 PMCID: PMC8485918 DOI: 10.2147/ijgm.s323699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease affecting older adults, although optimal strategies for treating such patients remain unclear. This prospective phase II, open-label, multicenter study was designed to assess the efficacy and safety of two hematologic growth factors, recombinant human thrombopoietin (rhTPO) and granulocyte colony-stimulating factor (G-CSF), in combination with decitabine, cytarabine, and aclarubicin (D-CTAG regimen) to treat older adults with newly diagnosed AML (Identifier: NCT04168138). The above agents were administered as follows: decitabine (15 mg/m2 daily, days 1–5); low-dose cytarabine (10 mg/m2 q12 h, days 3–9); rhTPO (15,000 U daily, days 2, 4, 6, 8, 10–24 or until >50×109/L platelets); aclarubicin (14 mg/m2 daily, days 3–6); and G-CSF (300 μg daily, days 2–9). We concurrently monitored historic controls treated with decitabine followed by cytarabine, aclarubicin, and G-CSF (D-CAG) only. After the first D-CTAG cycle, the overall response rate (ORR) was 84.2% (16/19), including 13 (73.7%) complete remissions (CRs) and three (15.8%) partial remissions. This CR rate surpassed that of the D-CAG treatment (p < 0.05). Median overall survival (OS) time in the D-CTAG group was 20.2 months (range, 4–31 months), compared with 14 months in the D-CAG group, and 1-year OS was 78%. The proportion of those experiencing grade III–IV thrombocytopenia was significantly lower for D-CTAG (57.9%) than for D-CAG (88.4%; p < 0.05). Ultimately, the curative effect of adding rhTPO was not inferior to that of D-CAG, and D-CTAG proved safer for elderly patients, especially in terms of hematologic toxicity. A prospective phase III randomized study is warranted to confirm these observations.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Hua Shi
- Haematology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University Shen Shan Central Hospital, Guangzhou, People's Republic of China
| | - Jing Shen
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yang Li
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Wei Yan
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ying Sun
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Aijun Liao
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yehui Tan
- Haematology Department of The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Yang
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Huihan Wang
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
12
|
Gilreath J, Lo M, Bubalo J. Thrombopoietin Receptor Agonists (TPO-RAs): Drug Class Considerations for Pharmacists. Drugs 2021; 81:1285-1305. [PMID: 34160821 PMCID: PMC8318934 DOI: 10.1007/s40265-021-01553-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
The thrombopoietin receptor agonists (TPO-RAs) romiplostim, eltrombopag, avatrombopag, and lusutrombopag carry unique US Food and Drug Administration (US FDA)- and European Medicines Agency (EMA)-approved indications and may be used to increase platelet counts in a variety of conditions. Current indications for available TPO-RAs include treatment of chronic immune thrombocytopenia (ITP) in cases of insufficient response to prior treatment (avatrombopag, eltrombopag, romiplostim), management of thrombocytopenia in adult patients with chronic liver disease who are scheduled to undergo a procedure (avatrombopag, lusutrombopag), management of severe aplastic anemia (eltrombopag), and management of thrombocytopenia associated with interferon-based therapy for hepatitis C (eltrombopag). Across current indications, pharmacists can assist in stabilizing platelet counts and help to reduce large undulations commonly seen when starting, stopping, or transitioning between these agents. If therapy modifications may benefit the patient, pharmacists should discuss possible changes with the patient's treatment team or treating physician. When used for ITP, romiplostim, eltrombopag, and avatrombopag stimulate TPO receptors on hematopoietic stem cells (also known as c-Mpl, or CD110) to promote platelet production; however, romiplostim is the only TPO-RA that binds at the same site as endogenous TPO. These subtle mechanistic differences may explain why switching TPO-RA may be clinically advantageous in some situations. As pharmacists are called to counsel patients on TPO-RA use, a deep understanding of potential adverse events and management strategies, as well as appropriate monitoring, will increase the likelihood that patients meet their goals of therapy in the shortest timeframe. Other uses of TPO-RAs are also discussed in this review, including use following hematopoietic stem cell transplant, use in myelodysplastic syndrome, and use in chemotherapy-induced thrombocytopenia.
Collapse
Affiliation(s)
- Jeffrey Gilreath
- Department of Pharmacotherapy, Clinical Hematology/Oncology Pharmacist, University of Utah Hospitals and Clinics Sugar House Clinic, Salt Lake City, UT, USA.
| | - Mimi Lo
- Adult Hematology/Oncology/Blood and Marrow Transplant, University of California, San Francisco Medical Center, San Francisco, CA, USA.,UCSF School of Pharmacy, San Francisco, CA, USA
| | - Joseph Bubalo
- Division of Hematology and Medical Oncology, and Oncology Clinical Pharmacist, OHSU Hospital and Clinics, Portland, OR, USA
| |
Collapse
|
13
|
Rani GF, Preham O, Ashwin H, Brown N, Hitchcock IS, Kaye PM. Dissecting pathways to thrombocytopenia in a mouse model of visceral leishmaniasis. Blood Adv 2021; 5:1627-1637. [PMID: 33710338 PMCID: PMC7993103 DOI: 10.1182/bloodadvances.2020004082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis is an important yet neglected parasitic disease caused by infection with Leishmania donovani or L infantum. Disease manifestations include fever, weight loss, hepatosplenomegaly, immune dysregulation, and extensive hematological complications. Thrombocytopenia is a dominant hematological feature seen in both humans and experimental models, but the mechanisms behind this infection-driven thrombocytopenia remain poorly understood. Using a murine model of experimental visceral leishmaniasis (EVL), we demonstrated a progressive decrease in platelets from day 14 after infection, culminating in severe thrombocytopenia by day 28. Plasma thrombopoietin (TPO) levels were reduced in infected mice, at least in part because of the alterations in the liver microenvironment associated with granulomatous inflammation. Bone marrow (BM) megakaryocyte cytoplasmic maturation was significantly reduced. In addition to a production deficit, we identified significant increases in platelet clearance. L donovani-infected splenectomized mice were protected from thrombocytopenia compared with sham operated infected mice and had a greater response to exogenous TPO. Furthermore, infection led to higher levels of platelet opsonization and desialylation, both associated with platelet clearance in spleen and liver, respectively. Critically, these changes could be reversed rapidly by drug treatment to reduce parasite load or by administration of TPO agonists. In summary, our findings demonstrate that the mechanisms underpinning thrombocytopenia in EVL are multifactorial and reversible, with no obvious residual damage to the BM microenvironment.
Collapse
Affiliation(s)
| | - Olivier Preham
- York Biomedical Research Institute, Hull York Medical School, and
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, and
| | - Najmeeyah Brown
- York Biomedical Research Institute, Hull York Medical School, and
| | - Ian S Hitchcock
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, and
| |
Collapse
|
14
|
Cooperative Role of Thrombopoietin and Vascular Endothelial Growth Factor-A in the Progression of Liver Cirrhosis to Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22041818. [PMID: 33673041 PMCID: PMC7918121 DOI: 10.3390/ijms22041818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Primary thrombopoietic mediator thrombopoietin (THPO) is mainly produced by the liver; it may act as a growth factor for hepatic progenitors. Principal angiogenesis inducer vascular endothelial growth factor-A (VEGF-A) is critical for the complex vascular network within the liver architecture. As a cross-regulatory loop between THPO and VEGF-A has been demonstrated in the hematopoietic system, the two growth factors were hypothesized to cooperatively contribute to the progression from liver cirrhosis (LC) to hepatocellular carcinoma (HCC). The mRNA and protein expression levels of THPO, VEGF-A, and their receptors were examined, compared, and correlated in paired cancerous and LC tissues from 26 cirrhosis-related HCC patients, using qRT-PCR and immunohistochemistry. THPO and VEGF-A were alternatively silenced by small interfering RNA (siRNA) in human liver cancer cell lines Huh7 and HepG2. THPO and VEGF-A expressions significantly increased in tumor versus LC tissues. HCC and paired LC cells expressed similar levels of THPO receptor (R), whereas vascular endothelial growth factor receptor (VEGFR) -1 and VEGFR-2 levels were higher in HCC than in corresponding LC tissue samples. A significant linear correlation emerged between THPO and VEGF-A transcripts in HCC and, at the protein level, THPO and THPOR were significantly correlated with VEGF-A in tumor tissues. Both HCC and LC expressed similar levels of gene and protein hypoxia inducible factor (HIF)-1α. Positive cross-regulation occurred with the alternative administration of siRNAs targeting THPO and those targeting VEGF-A in hypoxic liver cancer cell lines. These results suggest THPO and VEGF-A might act as interdependently regulated autocrine and/or paracrine systems for cellular growth in HCC. This might be clinically interesting, since new classes of THPOR agonistic/antagonistic drugs may provide novel therapeutic options to correct the frequent hemostatic abnormality seen in HCC patients.
Collapse
|
15
|
Gonzalez-Villalva A, Bizarro-Nevares P, Rojas-Lemus M, Ustarroz-Cano M, López-Valdez N, García-Peláez I, Albarrán-Alonso JC, Barbosa-Barrón F, Fortoul TI. A brief review of the biology of megakaryocytes and platelets and their role in thrombosis associated with particulate air pollution. Toxicol Ind Health 2021; 37:164-172. [PMID: 33506746 DOI: 10.1177/0748233720986352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Air pollution is a worldwide public health issue and it is associated with millions of premature deaths due to cancer, thrombosis, and pulmonary and cardiovascular diseases. Thrombosis is the excessive clotting that blocks a blood vessel, and its etiology is multifactorial. In recent years, growing evidence has linked air pollution, especially particulate matter (PM) and metals, to the development of thrombosis. PM and metals induce lung and systemic inflammation and oxidative stress that are frequent mechanisms in thrombosis. Platelets are important effectors of physiological hemostasis and pathological thrombosis. They are responsible for the formation of the initial plug and are important in the cellular model of coagulation. Therefore, any changes in their morphology or function or an increase in activation could be extremely relevant in thrombosis. Megakaryocytes (MKs) in the bone marrow and in the lungs are the precursor cells of platelets, and the latter is the first organ injured by air pollution. There is substantial evidence of the effect that PM and metals have on platelets, but there is almost no research about the effect of PM and metals on MKs. It is very likely that the alterations produced by air pollution originate in these cells. In this article, we review the biology of MKs and platelets and their role in particulate air pollution-related thrombosis to emphasize the need for further research in this field.
Collapse
Affiliation(s)
- Adriana Gonzalez-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Ustarroz-Cano
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Carlos Albarrán-Alonso
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernanda Barbosa-Barrón
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 7180Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
16
|
曾 晓, 焦 营, 李 宗, 张 玉, 叶 洁. [Thrombopoietin promotes megakaryopoiesis via protecting bone marrow endothelial function in patients undergoing chemotherapy for hematological malignancies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1134-1140. [PMID: 32895184 PMCID: PMC7429173 DOI: 10.12122/j.issn.1673-4254.2020.08.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To explore whether thrombopoietin (TPO) can rescue megakaryopoiesis by protecting bone marrowderived endothelial progenitor cells (BM-EPCs) in patients receiving chemotherapy for hematological malignancies. METHODS Bone marrow samples were collected from 23 patients with hematological malignancies 30 days after chemotherapy and from 10 healthy volunteers. BM-EPCs isolated from the samples were identified by staining for CD34, CD309 and CD133, and their proliferation in response to treatment with TPO was assessed using CCK8 assay. DiL-Ac-LDL uptake and FITC-UEA-I binding assay were performed to evaluate the amount of BM-EPCs from the subjects. Tube-formation and migration experiments were used for functional assessment of the BM-EPCs. The BM-EPCs with or without TPO treatment were co-cultured with human megakaryocytes, and the proliferation of the megakaryocytes was detected with flow cytometry. RESULTS Flow cytometry indicated that the TPO-treated cells had high expressions of CD34, CD133, and CD309. CCK8 assay demonstrated that TPO treatment enhanced the proliferation of the BM-EPCs, and the optimal concentration of TPO was 100 μg/L. Double immunofluorescence assay indicated that the number of BM-EPC was significantly higher in TPO-treated group than in the control group. The TPO-treated BM-EPCs exhibited stronger tube-formation and migration abilities (P < 0.05) and more significantly enhanced the proliferation of co-cultured human megakaryocytes than the control cells (P < 0.05). CONCLUSIONS TPO can directly stimulate megakaryopoiesis and reduce hemorrhage via protecting the function of BM-EPCs in patients following chemotherapy for hematological malignancies.
Collapse
Affiliation(s)
- 晓媛 曾
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 营营 焦
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 宗鹏 李
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 玉娇 张
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 洁瑜 叶
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Nakamura-Ishizu A, Matsumura T, Stumpf PS, Umemoto T, Takizawa H, Takihara Y, O'Neil A, Majeed ABBA, MacArthur BD, Suda T. Thrombopoietin Metabolically Primes Hematopoietic Stem Cells to Megakaryocyte-Lineage Differentiation. Cell Rep 2019; 25:1772-1785.e6. [PMID: 30428347 DOI: 10.1016/j.celrep.2018.10.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
During acute myelosuppression or thrombocytopenia, bone marrow (BM) hematopoietic cells respond rapidly to replenish peripheral blood platelets. While the cytokine thrombopoietin (Thpo) both regulates platelet production and maintains HSC potential, whether Thpo controls megakaryocyte (Mk)-lineage differentiation of HSCs is unclear. Here, we show that Thpo rapidly upregulates mitochondrial activity in HSCs, an activity accompanied by differentiation to an Mk lineage. Moreover, in unperturbed hematopoiesis, HSCs with high mitochondrial activity exhibit Mk-lineage differentiation in vitro and myeloid lineage-biased reconstitution in vivo. Furthermore, Thpo skewed HSCs to express the tetraspanin CD9, a pattern correlated with mitochondrial activity. Mitochondria-active HSCs are resistant to apoptosis and oxidative stress upon Thpo stimulation. Thpo-regulated mitochondrial activity associated with mitochondrial translocation of STAT3 phosphorylated at serine 727. Overall, we report an important role for Thpo in regulating rapid Mk-lineage commitment. Thpo-dependent changes in mitochondrial metabolism prime HSCs to undergo direct differentiation to an Mk lineage.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| | - Takayoshi Matsumura
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | - Patrick S Stumpf
- Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Terumasa Umemoto
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Yuji Takihara
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | - Aled O'Neil
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | | | - Ben D MacArthur
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan; Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| |
Collapse
|
18
|
Kim J, Jin G, Lee J, Lee K, Bae YS, Kim J. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate enhances thrombopoietin–induced megakaryocytic differentiation and plateletogenesis. BMB Rep 2019. [PMID: 30670147 PMCID: PMC6675245 DOI: 10.5483/bmbrep.2019.52.7.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have previously reported the effects of 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a synthetic phospholipid, on megakaryocytic differentiation of myeloid leukemia cells. Here, we demonstrate that (R)-TEMOSPho enhances megakaryopoiesis and plateletogenesis from primary hematopoietic stem cells (HSCs) induced by thrombopoietin (TPO). Specifically, we demonstrate at sub-saturation levels of TPO, the addition of (R)-TEMOSPho enhances differentiation and maturation of megakaryocytes (MKs) from murine HSCs derived from fetal liver. Furthermore, we show that production of platelets with (R)-TEMOSPho in combination with TPO is also more efficient than TPO alone and that platelets generated in vitro with these two agents are as functional as those from TPO alone. TPO can thus be partly replaced by or supplemented with (R)-TEMOSPho, and this in turn implies that (R)-TEMOSPho can be useful in efficient platelet production in vitro and potentially be a valuable option in designing cell-based therapy.
Collapse
Affiliation(s)
- Jusong Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Guanghai Jin
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Zhang L, Liu C, Wang H, Wu D, Su P, Wang M, Guo J, Zhao S, Dong S, Zhou W, Arakaki C, Zhang X, Zhou J. Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Res Ther 2018; 9:194. [PMID: 30016991 PMCID: PMC6050740 DOI: 10.1186/s13287-018-0926-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background Refinement of therapeutic-scale platelet production in vitro will provide a new source for transfusion in patients undergoing chemotherapy or radiotherapy. However, procedures for cost-effective and scalable platelet generation remain to be established. Methods In this study, we established human embryonic stem cell (hESC) lines containing knock-in of thrombopoietin (TPO) via CRISPR/Cas9-mediated genome editing. The expression and secretion of TPO was detected by western blotting and enzyme-linked immunosorbent assay. Then, we tested the potency for hematopoietic differentiation by coculturing the cells with mAGM-S3 cells and measured the generation of CD43+ and CD45+ hematopoietic progenitor cells (HPCs). The potency for megakaryocytic differentiation and platelet generation of TPO knock-in hESCs were further detected by measuring the expression of CD41a and CD42b. The morphology and function of platelets were analyzed with electronic microscopy and aggregation assay. Results The TPO gene was successfully inserted into the AAVS1 locus of the hESC genome and two cell lines with stable TPO expression and secretion were established. TPO knock-in exerts minimal effects on pluripotency but enhances early hematopoiesis and generation of more HPCs. More importantly, upon its knock-in, TPO augments megakaryocytic differentiation and platelet generation. In addition, the platelets derived from hESCs in vitro are functionally and morphologically comparable to those found in peripheral blood. Furthermore, TPO knock-in can partially replace the large quantities of extrinsic TPO necessary for megakaryocytic differentiation and platelet generation. Conclusions Our results demonstrate that autonomous production of cytokines in hESCs may become a powerful approach for cost-effective and large-scale platelet generation in translational medicine. Electronic supplementary material The online version of this article (10.1186/s13287-018-0926-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leisheng Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Jiaojiao Guo
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Shixuan Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Shuxu Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Cameron Arakaki
- Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Xiaobing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China.,Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Hayward CPM, Tasneem S, Rivard GE. Thrombopoietin levels in Quebec platelet disorder-Implications for the mechanism of thrombocytopenia. Int J Lab Hematol 2018; 40:e33-e34. [PMID: 29388746 PMCID: PMC5873450 DOI: 10.1111/ijlh.12781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/09/2018] [Indexed: 10/28/2022]
Affiliation(s)
- C P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - S Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - G E Rivard
- Division of Hematology/Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
23
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|