1
|
Du K, Grocott L, Anichini G, O’Neill K, Syed N. Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment-A Narrative Review. Biomedicines 2024; 12:2481. [PMID: 39595047 PMCID: PMC11592029 DOI: 10.3390/biomedicines12112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumour, characterised by its invasive nature and complex metabolic profile. Emerging research highlights the role of amino acids (AAs) in glioblastoma metabolism, influencing tumour growth and the surrounding microenvironment. METHODS This narrative review synthesises recent pre-clinical studies focusing on the metabolic functions of AAs in glioblastoma. Key areas include the effects of AA deprivation on tumour growth, adaptive mechanisms, and the tumour microenvironment. RESULTS The effects related to arginine, glutamine, methionine, and cysteine deprivation have been more extensively reported. Arginine deprivation in arginine-auxotrophic glioblastomas induces apoptosis and affects cell adhesion, while glutamine deprivation disrupts metabolic pathways and enhances autophagy. Methionine and cysteine deprivation impact lipid metabolism and ferroptosis. Tumour adaptive mechanisms present challenges, and potential compensatory responses have been identified. The response of the microenvironment to AA deprivation, including immune modulation, is critical to determining therapeutic outcomes. CONCLUSIONS Targeting AA metabolism offers a promising approach for glioblastoma treatment, with potential targeted drugs showing clinical promise. However, the complexity of tumour adaptive mechanisms and their impact on the microenvironment necessitates further research to optimise combination therapies and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Keven Du
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Leila Grocott
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Giulio Anichini
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Kevin O’Neill
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| |
Collapse
|
2
|
Hwang G, Kwon M, Seo D, Kim DH, Lee D, Lee K, Kim E, Kang M, Ryu JH. ASOptimizer: Optimizing antisense oligonucleotides through deep learning for IDO1 gene regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102186. [PMID: 38706632 PMCID: PMC11066473 DOI: 10.1016/j.omtn.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Recent studies have highlighted the effectiveness of using antisense oligonucleotides (ASOs) for cellular RNA regulation, including targets that are considered undruggable; however, manually designing optimal ASO sequences can be labor intensive and time consuming, which potentially limits their broader application. To address this challenge, we introduce a platform, the ASOptimizer, a deep-learning-based framework that efficiently designs ASOs at a low cost. This platform not only selects the most efficient mRNA target sites but also optimizes the chemical modifications for enhanced performance. Indoleamine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by depleting tryptophan and producing kynurenine, leading to immunosuppression through the aryl-hydrocarbon receptor (Ahr) pathway within the tumor microenvironment. We used ASOptimizer to identify ASOs that target IDO1 mRNA as potential cancer therapeutics. Our methodology consists of two stages: sequence engineering and chemical engineering. During the sequence-engineering stage, we optimized and predicted ASO sequences that could target IDO1 mRNA efficiently. In the chemical-engineering stage, we further refined these ASOs to enhance their inhibitory activity while reducing their potential cytotoxicity. In conclusion, our research demonstrates the potential of ASOptimizer for identifying ASOs with improved efficacy and safety.
Collapse
Affiliation(s)
- Gyeongjo Hwang
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Mincheol Kwon
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dongjin Seo
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Daehwan Lee
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Kiwon Lee
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Eunyoung Kim
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Mingeun Kang
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
- BIORCHESTRA US., Inc., 1 Kendall Square, Building 200, Suite 2-103, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Cui M, Liu D, Xiong W, Wang Y, Mi J. ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 2021; 7:274. [PMID: 34608122 PMCID: PMC8490388 DOI: 10.1038/s41420-021-00666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.
Collapse
Affiliation(s)
- Mingqing Cui
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wujun Xiong
- Department of Gastroenterlogy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Yugang Wang
- Department of gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Mi
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|