1
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
2
|
Boncompagni G, Varone A, Tatangelo V, Capitani N, Frezzato F, Visentin A, Trentin L, Corda D, Baldari CT, Patrussi L. Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Front Oncol 2022; 12:835290. [PMID: 35392232 PMCID: PMC8980805 DOI: 10.3389/fonc.2022.835290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.
Collapse
Affiliation(s)
| | - Alessia Varone
- Institute of Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Daniela Corda
- Department of Biomedical Sciences, National Research Council, Rome, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Varone A, Amoruso C, Monti M, Patheja M, Greco A, Auletta L, Zannetti A, Corda D. The phosphatase Shp1 interacts with and dephosphorylates cortactin to inhibit invadopodia function. Cell Commun Signal 2021; 19:64. [PMID: 34088320 PMCID: PMC8176763 DOI: 10.1186/s12964-021-00747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. METHODS Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. RESULTS The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. CONCLUSION The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs. Video abstract.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Amoruso
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marcello Monti
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Manpreet Patheja
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Adelaide Greco
- Interdipartimental Center of Veterinary Radiology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Luigi Auletta
- IRCCS SDN, Via Emanuele Gianturco 113, 80142 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, Via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Biomedical Sciences, National Research Council, Piazzale Aldo Moro 7, 00185 Rome, Italy
| |
Collapse
|
4
|
Campos AM, Nuzzo G, Varone A, Italiani P, Boraschi D, Corda D, Fontana A. Direct LC-MS/MS Analysis of Extra- and Intracellular Glycerophosphoinositol in Model Cancer Cell Lines. Front Immunol 2021; 12:646681. [PMID: 33737939 PMCID: PMC7960645 DOI: 10.3389/fimmu.2021.646681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Glycerophosphoinositols (GPIs) are water-soluble bioactive phospholipid derivatives of increasing interest as intracellular and paracrine mediators of eukaryotic cell functions. The most representative compound of the family is glycerophosphoinositol (GroPIns), an ubiquitous component of mammalian cells that participates in cell proliferation, cell survival and cell response to stimuli. Levels and activity of this compound vary among cell types and deciphering these functions requires accurate measurements in in vitro and in vivo models. The conventional approaches for the analysis of GroPIns pose several issues in terms of sensitivity and product resolution, especially when the product is in the extracellular milieu. Here we present an UPLC-MS study for the quantitative analysis of this lipid derivative in cells and, for the first time, culture supernatants. The method is based on a solid-phase extraction that allows for fast desalting and analyte concentration. The robustness of the procedure was tested on the simultaneous measurements of intra- and extracellular levels of GroPIns in a number of human cell lines where it has been shown that the non-transformed cells are characterized by high extracellular level of GroPIns, whereas the tumor cells tended to have higher intracellular levels.
Collapse
Affiliation(s)
- Ana Margarida Campos
- Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy.,Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Naples, Italy
| | - Genoveffa Nuzzo
- Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Alessia Varone
- Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Naples, Italy
| | - Paola Italiani
- Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Naples, Italy
| | - Diana Boraschi
- Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Naples, Italy
| | - Daniela Corda
- Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Naples, Italy.,Consiglio Nazionale delle Ricerche, Department of Biomedical Sciences Rome, Italy
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Vera MS, Simón MV, Prado Spalm FH, Ayala-Peña VB, German OL, Politi LE, Santiago Valtierra FX, Rotstein NP. Ceramide-1-phosphate promotes the migration of retina Müller glial cells. Exp Eye Res 2020; 202:108359. [PMID: 33197453 DOI: 10.1016/j.exer.2020.108359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Müller glial cells, the major glial cell type in the retina, are activated by most retina injuries, leading to an increased proliferation and migration that contributes to visual dysfunction. The molecular cues involved in these processes are still ill defined. We demonstrated that sphingosine-1-phosphate (S1P), a bioactive sphingolipid, promotes glial migration. We now investigated whether ceramide-1-phosphate (C1P), also a bioactive sphingolipid, was involved in Müller glial cell migration. We evaluated cell migration in primary Müller glial cultures, prepared from newborn rat retinas, by the scratch wound assay. Addition of either 10 μM C8-ceramide-1-phosphate (C8-C1P) or 5 μM C16-C1P (a long chain, natural C1P) stimulated glial migration. Inhibiting PI3K almost completely blocked C8-C1P-elicited migration whereas inhibition of ERK1-2/MAPK pathway diminished it and p38MAPK inhibition did not affect it. Pre-treatment with a cytoplasmic phospholipase A2 (cPLA2) inhibitor markedly reduced C8-C1P-induced migration. Inhibiting ceramide kinase (CerK), the enzyme catalyzing C1P synthesis, partially decreased glial migration. Combined addition of S1P and C8-C1P promoted glial migration to the same extent as when they were added separately, suggesting they converge on their downstream signaling to stimulate Müller glia migration. These results suggest that C1P addition stimulated migration of glial Müller cells, promoting the activation of cPLA2, and the PI3K and ERK/MAPK pathways. They also suggest that CerK-dependent C1P synthesis was one of the factors contributing to glial migration, thus uncovering a novel role for C1P in controlling glial motility.
Collapse
Affiliation(s)
- Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Victoria B Ayala-Peña
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - O Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Florencia X Santiago Valtierra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
7
|
Park JH, Lee C, Han D, Lee JS, Lee KM, Song MJ, Kim K, Lee H, Moon KC, Kim Y, Jung M, Moon JH, Lee H, Ryu HS. Moesin ( MSN) as a Novel Proteome-Based Diagnostic Marker for Early Detection of Invasive Bladder Urothelial Carcinoma in Liquid-Based Cytology. Cancers (Basel) 2020; 12:cancers12041018. [PMID: 32326232 PMCID: PMC7225967 DOI: 10.3390/cancers12041018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder urothelial carcinoma (BUC) is the most lethal malignancy of the urinary tract. Treatment for the disease highly depends on the invasiveness of cancer cells. Therefore, a predictive biomarker needs to be identified for invasive BUC. In this study, we employed proteomics methods on urine liquid-based cytology (LBC) samples and a BUC cell line library to determine a novel predictive biomarker for invasive BUC. Furthermore, an in vitro three-dimensional (3D) invasion study for biological significance and diagnostic validation through immunocytochemistry (ICC) were also performed. The proteomic analysis suggested moesin (MSN) as a potential biomarker to predict the invasiveness of BUC. The in vitro 3D invasion study showed that inhibition of MSN significantly decreased invasiveness in BUC cell lines. Further validation using ICC ultimately confirmed moesin (MSN) as a potential biomarker to predict the invasiveness of BUC (p = 0.023). In conclusion, we suggest moesin as a potential diagnostic marker for early detection of BUC with invasion in LBC and as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul 07061, Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Dohyun Han
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Kyung Min Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
| | - Heonyi Lee
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Ji Hye Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
- Correspondence: (H.L.); (H.S.R.)
| | - Han Suk Ryu
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
- Correspondence: (H.L.); (H.S.R.)
| |
Collapse
|
8
|
Di Somma A, Avitabile C, Cirillo A, Moretta A, Merlino A, Paduano L, Duilio A, Romanelli A. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim Biophys Acta Gen Subj 2020; 1864:129606. [PMID: 32229224 DOI: 10.1016/j.bbagen.2020.129606] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature. METHODS In this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. RESULTS We identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane. CONCLUSIONS The peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery. GENERAL SIGNIFICANCE Identification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.
Collapse
Affiliation(s)
- Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (CNR), via Mezzocannone 16, 80134 Napoli, Italy
| | - Arianna Cirillo
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy.
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy.
| |
Collapse
|
9
|
Tunset HM, Feuerherm AJ, Selvik LKM, Johansen B, Moestue SA. Cytosolic Phospholipase A2 Alpha Regulates TLR Signaling and Migration in Metastatic 4T1 Cells. Int J Mol Sci 2019; 20:ijms20194800. [PMID: 31569627 PMCID: PMC6801560 DOI: 10.3390/ijms20194800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022] Open
Abstract
Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell’s ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.
Collapse
Affiliation(s)
- Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Center for Oral Health Services and Research (TkMidt), 7030 Trondheim, Norway.
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Linn-Karina Myrland Selvik
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
- Department of Health Sciences, Nord University, P.O. Box 1490, 8049 Bodø, Norway.
| |
Collapse
|