1
|
Liu Q, Pillus L, Petty EL. Functional tug of war between kinases, phosphatases, and the Gcn5 acetyltransferase in chromatin and cell cycle checkpoint controls. G3 (BETHESDA, MD.) 2023; 13:jkad021. [PMID: 36772957 PMCID: PMC10085806 DOI: 10.1093/g3journal/jkad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.
Collapse
Affiliation(s)
- Qihao Liu
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Emily L Petty
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| |
Collapse
|
2
|
Hollenstein DM, Veis J, Romanov N, Gérecová G, Ogris E, Hartl M, Ammerer G, Reiter W. PP2A Rts1 antagonizes Rck2-mediated hyperosmotic stress signaling in yeast. Microbiol Res 2022; 260:127031. [PMID: 35461031 DOI: 10.1016/j.micres.2022.127031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
In Saccharomyces cerevisiae, impairment of protein phosphatase PP2ARts1 leads to temperature and hyperosmotic stress sensitivity, yet the underlying mechanism and the scope of action of the phosphatase in the stress response remain elusive. Using a quantitative mass spectrometry-based approach we have identified a set of putative substrate proteins that show both hyperosmotic stress- and PP2ARts1-dependent changes in their phosphorylation pattern. A comparative analysis with published MS-shotgun data revealed that the phosphorylation status of many of these sites is regulated by the MAPKAP kinase Rck2, suggesting that the phosphatase antagonizes Rck2 signaling. Detailed gel mobility shift assays and protein-protein interaction analysis strongly indicate that Rck2 activity is directly regulated by PP2ARts1 via a SLiM B56-family interaction motif, revealing how PP2ARts1 influences the response to hyperosmotic stress in Yeast.
Collapse
Affiliation(s)
- D M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - J Veis
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - N Romanov
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - G Gérecová
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - E Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - M Hartl
- Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - G Ammerer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - W Reiter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
3
|
Chen HQ, Xing Q, Cheng C, Zhang MM, Liu CG, Champreda V, Zhao XQ. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance. Front Bioeng Biotechnol 2022; 10:837813. [PMID: 35402407 PMCID: PMC8992792 DOI: 10.3389/fbioe.2022.837813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
Collapse
Affiliation(s)
- Hong-Qi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
5
|
Hollenstein DM, Gérecová G, Romanov N, Ferrari J, Veis J, Janschitz M, Beyer R, Schüller C, Ogris E, Hartl M, Ammerer G, Reiter W. A phosphatase-centric mechanism drives stress signaling response. EMBO Rep 2021; 22:e52476. [PMID: 34558777 PMCID: PMC8567219 DOI: 10.15252/embr.202152476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Changing environmental cues lead to the adjustment of cellular physiology by phosphorylation signaling networks that typically center around kinases as active effectors and phosphatases as antagonistic elements. Here, we report a signaling mechanism that reverses this principle. Using the hyperosmotic stress response in Saccharomyces cerevisiae as a model system, we find that a phosphatase-driven mechanism causes induction of phosphorylation. The key activating step that triggers this phospho-proteomic response is the Endosulfine-mediated inhibition of protein phosphatase 2A-Cdc55 (PP2ACdc55 ), while we do not observe concurrent kinase activation. In fact, many of the stress-induced phosphorylation sites appear to be direct substrates of the phosphatase, rendering PP2ACdc55 the main downstream effector of a signaling response that operates in parallel and independent of the well-established kinase-centric stress signaling pathways. This response affects multiple cellular processes and is required for stress survival. Our results demonstrate how a phosphatase can assume the role of active downstream effectors during signaling and allow re-evaluating the impact of phosphatases on shaping the phosphorylome.
Collapse
Affiliation(s)
- David Maria Hollenstein
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
| | - Gabriela Gérecová
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
| | | | - Jessica Ferrari
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
| | - Jiri Veis
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
- Center for Medical BiochemistryMax Perutz Labs, Vienna BioCenterMedical University of ViennaViennaAustria
| | - Marion Janschitz
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
| | - Reinhard Beyer
- Department of Applied Genetics and Cell Biology (DAGZ)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln a.d. DonauAustria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln a.d. DonauAustria
| | - Egon Ogris
- Center for Medical BiochemistryMax Perutz Labs, Vienna BioCenterMedical University of ViennaViennaAustria
| | - Markus Hartl
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
- Mass Spectrometry FacilityMax Perutz Labs, Vienna BioCenterUniversity of ViennaViennaAustria
| | - Gustav Ammerer
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
| | - Wolfgang Reiter
- Department of Biochemistry and Cell BiologyMax Perutz LabsVienna BioCenter (VBC)University of ViennaViennaAustria
- Mass Spectrometry FacilityMax Perutz Labs, Vienna BioCenterUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Biomolecules 2021; 11:biom11101530. [PMID: 34680163 PMCID: PMC8533825 DOI: 10.3390/biom11101530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Eukaryotes utilize distinct mitogen/messenger-activated protein kinase (MAPK) pathways to evoke appropriate responses when confronted with different stimuli. In yeast, hyperosmotic stress activates MAPK Hog1, whereas mating pheromones activate MAPK Fus3 (and MAPK Kss1). Because these pathways share several upstream components, including the small guanosine-5'-triphosphate phosphohydrolase (GTPase) cell-division-cycle-42 (Cdc42), mechanisms must exist to prevent inadvertent cross-pathway activation. Hog1 activity is required to prevent crosstalk to Fus3 and Kss1. To identify other factors required to maintain signaling fidelity during hypertonic stress, we devised an unbiased genetic selection for mutants unable to prevent such crosstalk even when active Hog1 is present. We repeatedly isolated truncated alleles of RGA1, a Cdc42-specific GTPase-activating protein (GAP), each lacking its C-terminal catalytic domain, that permit activation of the mating MAPKs under hyperosmotic conditions despite Hog1 being present. We show that Rga1 down-regulates Cdc42 within the high-osmolarity glycerol (HOG) pathway, but not the mating pathway. Because induction of mating pathway output via crosstalk from the HOG pathway takes significantly longer than induction of HOG pathway output, our findings suggest that, under normal conditions, Rga1 contributes to signal insulation by limiting availability of the GTP-bound Cdc42 pool generated by hypertonic stress. Thus, Rga1 action contributes to squelching crosstalk by imposing a type of “kinetic proofreading”. Although Rga1 is a Hog1 substrate in vitro, we eliminated the possibility that its direct Hog1-mediated phosphorylation is necessary for its function in vivo. Instead, we found first that, like its paralog Rga2, Rga1 is subject to inhibitory phosphorylation by the S. cerevisiae cyclin-dependent protein kinase 1 (Cdk1) ortholog Cdc28 and that hyperosmotic shock stimulates its dephosphorylation and thus Rga1 activation. Second, we found that Hog1 promotes Rga1 activation by blocking its Cdk1-mediated phosphorylation, thereby allowing its phosphoprotein phosphatase 2A (PP2A)-mediated dephosphorylation. These findings shed light on why Hog1 activity is required to prevent crosstalk from the HOG pathway to the mating pheromone response pathway.
Collapse
|