1
|
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase. Proc Natl Acad Sci U S A 2024; 121:e2320070121. [PMID: 38968120 PMCID: PMC11252808 DOI: 10.1073/pnas.2320070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/02/2024] [Indexed: 07/07/2024] Open
Abstract
Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Katsuhiko Aoki
- Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Junnosuke Tomiyoshi
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Ayasa Tajima
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Chiba274-8510, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo143-8540, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
2
|
Varshney N, Mishra AK. Deep Learning in Phosphoproteomics: Methods and Application in Cancer Drug Discovery. Proteomes 2023; 11:proteomes11020016. [PMID: 37218921 DOI: 10.3390/proteomes11020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Protein phosphorylation is a key post-translational modification (PTM) that is a central regulatory mechanism of many cellular signaling pathways. Several protein kinases and phosphatases precisely control this biochemical process. Defects in the functions of these proteins have been implicated in many diseases, including cancer. Mass spectrometry (MS)-based analysis of biological samples provides in-depth coverage of phosphoproteome. A large amount of MS data available in public repositories has unveiled big data in the field of phosphoproteomics. To address the challenges associated with handling large data and expanding confidence in phosphorylation site prediction, the development of many computational algorithms and machine learning-based approaches have gained momentum in recent years. Together, the emergence of experimental methods with high resolution and sensitivity and data mining algorithms has provided robust analytical platforms for quantitative proteomics. In this review, we compile a comprehensive collection of bioinformatic resources used for the prediction of phosphorylation sites, and their potential therapeutic applications in the context of cancer.
Collapse
Affiliation(s)
- Neha Varshney
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 93093, USA
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Abhinava K Mishra
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Liu M, Su Y, Peng J, Zhu AJ. Protein modifications in Hedgehog signaling: Cross talk and feedback regulation confer divergent Hedgehog signaling activity. Bioessays 2021; 43:e2100153. [PMID: 34738654 DOI: 10.1002/bies.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post-translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh signaling, with a special emphasis on crosstalk between different forms of PTMs and their feedback regulation by Hh signaling.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jingyu Peng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
5
|
Gilloteaux J, Bouchat J, Bielarz V, Brion JP, Nicaise C. A primary cilium in oligodendrocytes: a fine structure signal of repairs in thalamic Osmotic Demyelination Syndrome (ODS). Ultrastruct Pathol 2021; 45:128-157. [PMID: 34154511 DOI: 10.1080/01913123.2021.1891161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium.,Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Valery Bielarz
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| |
Collapse
|
6
|
A systematic view of pediatric medulloblastoma proteomics-current state of the field and future directions. Childs Nerv Syst 2021; 37:779-788. [PMID: 33409616 DOI: 10.1007/s00381-020-04988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Quantitative mass spectrometry (MS)-based approaches have allowed further characterization of medulloblastoma (MB) classification and clinical/biological behavior. By investigating protein expression, as well as the role of post-translational modifications in shaping cellular activity, novel avenues of research will clarify the current subgrouping, providing elements for tumor treatment-new molecular targets and signaling cascades-and introducing serum, urinary, and CSF markers of tumor growth and recurrence. We systematically searched and reviewed original research articles treating MB proteomics on PubMed. Reviews, opinion papers, and abstracts were excluded from the final work. A total of 30 novel articles treating the proteomic characterization of MB were included in our review. Research conducted on tissue samples, cell lines, CSF, and urine, as well as exosome and medullospheres, was considered, to picture a broad view of the different directions MS-based proteomic analysis is moving toward. In this review, we collect, summarize, and interpret the current literature on this topic. Significant progress has been achieved in the last decade in MB characterization, paving the way for further exploration of large biobanks of MB and other tissues that will allow a more systematic understanding of MB functioning and clinical progression.
Collapse
|