1
|
Li W, Zeng Y, Zhong J, Hu Y, Xiong X, Zhou Y, Fu L. Probiotics Exert Gut Immunomodulatory Effects by Regulating the Expression of Host miRNAs. Probiotics Antimicrob Proteins 2025; 17:557-568. [PMID: 39754704 DOI: 10.1007/s12602-024-10443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
Probiotics exert a diverse range of immunomodulatory effects on the human gut immune system. These mechanisms encompass strengthening the intestinal mucosal barrier, inhibiting pathogen adhesion and colonization, stimulating immune modulation, and fostering the production of beneficial substances. As a result, probiotics hold significant potential in the prevention and treatment of various conditions, including inflammatory bowel disease and colorectal cancer. A pivotal mechanism by which probiotics achieve these effects is through modulating the expression of host miRNAs. miRNAs, non-coding RNA molecules, are vital regulators of fundamental biological processes like cell growth, differentiation, and apoptosis. By interacting with mRNAs, miRNAs can either promote their degradation or repress their translation, thereby regulating gene expression post-transcriptionally and modulating the immune system. This review provides a comprehensive overview of how probiotics modulate gut immune responses by altering miRNA expression levels, both upregulating and downregulating specific miRNAs. It further delves into how this modulation impacts the host's resistance to pathogens and susceptibility to diseases, offering a theoretical foundation and practical insights for the clinical utilization of probiotics in disease prevention and therapy.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yongwei Zeng
- Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jiayu Zhong
- Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Youyu Hu
- Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, China.
| | - Li Fu
- Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Li H, Liu G, Wang B, Momeni MR. Exosomes and microRNAs as mediators of the exercise. Eur J Med Res 2025; 30:38. [PMID: 39828711 PMCID: PMC11742998 DOI: 10.1186/s40001-025-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids. Numerous research projects have emphasized the significant impact of miRNAs on controlling biological changes brought about by physical activity. These molecules play main roles in important processes such as the growth of skeletal muscle and heart muscle cells, the creation of mitochondria, the development of the vascular system, and the regulation of metabolism. Studies have shown that physical exertion utilizes the contributions of miR-1, miR-133, miR-206, miR-208, and miR-486 to revitalize and restore skeletal muscle tissue. Moreover, detecting alterations in miRNA levels and connecting them to the specific outcomes of various exercise routines and intensities can act as indicators for physical adaptation and the reaction to physical activity in long-term diseases. Numerous studies have confirmed that extracellular vesicles (EVs) which composed of different members such as exosomes have the ability to reduce inflammation through the activation of the nuclear factor kappa B (NF-κB pathway. Furthermore, physical activity greatly affects the levels of specific miRNAs present in exosomes derived from skeletal muscle. Therefore, exosomal miRNAs target some pathways that are related to growth and development, such asWnt/β-catenin, PI3K/AKT, and insulin-like growth factor 1 (IGF1). Exercise-induced exosomes have also been identified as important mediators in promoting beneficial effects throughout the body. The aim of this review is to summarize the effect of exercise on the function of miRNAs and exosomes.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Sport Leisure, Sungshin Women's University, Seoul, 02844, Korea
| | - Guifang Liu
- Department of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China.
| | - Bing Wang
- School of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | | |
Collapse
|
4
|
Xu Z, Wu XM, Luo YB, Li H, Zhou YQ, Liu ZQ, Li ZY. Exploring the therapeutic potential of yeast β-glucan: Prebiotic, anti-infective, and anticancer properties - A review. Int J Biol Macromol 2024; 283:137436. [PMID: 39522898 DOI: 10.1016/j.ijbiomac.2024.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Yeast β-glucan (YBG), an indigestible polysaccharide from yeast cell walls, is multifunctional. It plays a pivotal role in regulating gut microbiota (GM) and boosting the immune system, which is central to research on inflammation, cancer, and metabolic diseases. By modulating the GM, YBG exhibits various prebiotic effects, including hypoglycemic, hypolipidemic, and immune-regulating properties. Additionally, acting as a bioreactor modulator, it activates immune responses, demonstrating potential in anti-infection and anticancer applications. This article synthesizes the latest data from in vitro, in vivo, and clinical studies. It comprehensively evaluates the therapeutic potential of YBG, starting from its structure-function relationship. It particularly focuses on the application prospects of yeast β-glucan in probiotic-like effects, anti-infectious properties, and anti-cancer activity, and explores the underlying mechanisms of these actions. The aim of this article is to elucidate the positive impact of YBG on health by modulating the gut microbiota and enhancing immune responses. Simultaneously, it identifies critical areas for future research to provide theoretical support for its development in biomedical applications.
Collapse
Affiliation(s)
- Zhen Xu
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao Meng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yan Bin Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hui Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yong Qin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhao Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhi Ying Li
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Lee YZ, Cheng SH, Lin YF, Wu CC, Tsai YC. The Beneficial Effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 in a Letrozole-Induced Polycystic Ovary Syndrome Rat Model. Int J Mol Sci 2024; 25:8706. [PMID: 39201391 PMCID: PMC11354393 DOI: 10.3390/ijms25168706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age globally. Emerging evidence suggests that the dysregulation of microRNAs (miRNAs) and gut dysbiosis are linked to the development of PCOS. In this study, the effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 (DSM 27449) were investigated in a rat model of PCOS induced by letrozole. The administration of DSM 27449 resulted in improved ovarian function, reduced cystic follicles, and lower serum testosterone levels. Alterations in miRNA expressions and increased levels of the pro-apoptotic protein Bax in ovarian tissues were observed in PCOS-like rats. Notably, the administration of DSM 27449 restored the expression of miRNAs, including miR-30a-5p, miR-93-5p, and miR-223-3p, leading to enhanced ovarian function through the downregulation of Bax expressions in ovarian tissues. Additionally, 16S rRNA sequencing showed changes in the gut microbiome composition after letrozole induction. The strong correlation between specific bacterial genera and PCOS-related parameters suggested that the modulation of the gut microbiome by DSM 27449 was associated with the improvement of PCOS symptoms. These findings demonstrate the beneficial effects of DSM 27449 in ameliorating PCOS symptoms in letrozole-induced PCOS-like rats, suggesting that DSM 27449 may serve as a beneficial dietary supplement with the therapeutic potential for alleviating PCOS.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shih-Hsuan Cheng
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
6
|
Stefanaki C, Rozou P, Efthymiou V, Xinias I, Mastorakos G, Bacopoulou F, Papagianni M. Impact of Probiotics on the Glycemic Control of Pediatric and Adolescent Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2629. [PMID: 39203766 PMCID: PMC11357215 DOI: 10.3390/nu16162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Human recombinant insulin is currently the only therapy for children and adolescents with type 1 diabetes (T1D), although not always efficient for the glycemic control of these individuals. The interrelation between the gut microbiome and the glycemic control of apparently healthy populations, as well as various populations with diabetes, is undeniable. Probiotics are biotherapeutics that deliver active components to various targets, primarily the gastrointestinal tract. This systematic review and meta-analysis examined the effect of the administration of probiotics on the glycemic control of pediatric and adolescent individuals with T1D. MATERIALS AND METHODS Randomized controlled trials employing the administration of probiotics in children and adolescents with T1D (with ≥10 individuals per treatment arm), written in English, providing parameters of glycemic control, such as mean glucose concentrations and glycosylated hemoglobin (HbA1c), were deemed eligible. RESULTS The search strategy resulted in six papers with contradictory findings. Ultimately, five studies of acceptable quality, comprising 388 children and adolescents with T1D, were included in the meta-analysis. Employing a random and fixed effects model revealed statistically significant negative effect sizes of probiotics on the glycemic control of those individuals, i.e., higher concentrations of glucose and HbA1c than controls. CONCLUSIONS Children and adolescents with T1D who received probiotics demonstrated worse glycemic control than controls after the intervention. Adequately powered studies, with extended follow-up periods, along with monitoring of compliance and employing the proper strains, are required to unravel the mechanisms of action and the relative effects of probiotics, particularly concerning diabetes-related complications and metabolic outcomes.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Rozou
- Hygiene, Social & Preventive Medicine and Medical Statistics Laboratory, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Pediatrics, General Hospital of Larisa, 38221 Larissa, Greece
| | - Vasiliki Efthymiou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Xinias
- Third Pediatric Department, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Papagianni
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
7
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
8
|
Schemczssen-Graeff Z, Silva CR, de Freitas PNN, Constantin PP, Pileggi SAV, Olchanheski LR, Pileggi M. Probiotics as a strategy for addressing helminth infections in low-income countries: Working smarter rather than richer. Biochem Pharmacol 2024; 226:116363. [PMID: 38871336 DOI: 10.1016/j.bcp.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology, and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paola Pereira Constantin
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
9
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
10
|
Inchingolo AD, Dipalma G, Viapiano F, Netti A, Ferrara I, Ciocia AM, Mancini A, Di Venere D, Palermo A, Inchingolo AM, Inchingolo F. Celiac Disease-Related Enamel Defects: A Systematic Review. J Clin Med 2024; 13:1382. [PMID: 38592254 PMCID: PMC10932357 DOI: 10.3390/jcm13051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION This systematic review aims to elucidate the intricate correlation between celiac disease (CD) and dental enamel defects (DED), exploring pathophysiological mechanisms, oral health implications, and a dentist's role in early diagnosis. MATERIALS AND METHODS Following PRISMA guidelines, a comprehensive search from 1 January 2013 to 1 January 2024 across PubMed, Cochrane Library, Scopus, and Web of Science identified 153 publications. After exclusions, 18 studies met the inclusion criteria for qualitative analysis. Inclusion criteria involved study types (RCTs, RCCTs, case series), human participants, English language, and full-text available. RESULTS The search yielded 153 publications, with 18 studies meeting the inclusion criteria for qualitative analysis. Notable findings include a high prevalence of DED in CD patients, ranging from 50 to 94.1%. Symmetrical and chronological defects, according to Aine's classification, were predominant, and significant associations were observed between CD severity and enamel defect extent. CONCLUSIONS The early recognition of oral lesions, particularly through Aine's classification, may signal potential CD even in the absence of gastrointestinal symptoms. Correlations between CD and dental health conditions like molar incisor hypomineralization (MIH) emphasize the dentist's crucial role in early diagnosis. Collaboration between dentists and gastroenterologists is essential for effective monitoring and management. This review consolidates current knowledge, laying the groundwork for future research and promoting interdisciplinary collaboration for improved CD-related oral health outcomes. Further large-scale prospective research is recommended to deepen our understanding of these issues.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Netti
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Irene Ferrara
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| |
Collapse
|
11
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
12
|
Rafiyian M, Gouyandeh F, Saati M, Davoodvandi A, Rasooli Manesh SM, Asemi R, Sharifi M, Asemi Z. Melatonin affects the expression of microRNA-21: A mini-review of current evidence. Pathol Res Pract 2024; 254:155160. [PMID: 38277748 DOI: 10.1016/j.prp.2024.155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Melatonin (MLT) is an endogenous hormone produced by pineal gland which possess promising anti-tumor effects. Anti-inflammatory and anti-oxidant properties of MLT, along with its immunomodulatory, proapoptotic, and anti-angiogenic properties, are often referred to the main mechanisms of its anti-tumor effects. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of MLT. Among these MLT-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs(miRNAs). MiRNAs are among the most promising and potential therapeutic and diagnostic tools in different diseases and enhanced the development of better therapeutic drugs. Suppression of oncomicroRNAs such as microRNA-21, - 20a, and - 27a as well as, up-regulation of microRNA-34 a/c are among the most important effects of MLT on microRNAs homeostasis. Recently, miR-21 has attracted the attention of scientists due to the its wide range of effects on different cancers and diseases. Regulation of this RNA may be a key to the development of better therapeutic targets. The present review will summarize the findings of in vitro and experimental studies of MLT-induced impacts on the expression of microRNAs which are involved in different models and numerous stages of tumor initiation, growth, metastasis, and chemo-resistance.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Gouyandeh
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Saffar KN, Larypoor M, Torbati MB. Analyzing of colorectal cancerrelated genes and microRNAs expression profiles in response to probiotics Lactobacillus acidophilus and Saccharomyces cerevisiae in colon cancer cell lines. Mol Biol Rep 2024; 51:122. [PMID: 38227272 DOI: 10.1007/s11033-023-09008-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Colorectal cancer is the world's third most frequent cancer and the fourth cause of mortality. Probiotics play an important function in preventing metastasis as well as the growth and proliferation of malignant cancer cells. METHODS AND RESULTS The study investigated the anticancer effect of Lactobacillus acidophilus supernatant and Saccharomyces cerevisiae yeast on colorectal cell lines, including HT29 and SW480 as a colorectal cancer model. The extract from the Lactobacillus acidophilus and Saccharomyces cerevisiae standard probiotics were prepared, and probiotics characterization was confirmed by morphological and Biochemical tests. The viability of HT29 and SW480 colon cancer cell lines on effecting probiotic supernatant was evaluated by measuring the MTT colorimetric method. Comparison of the expression profile of several genes involved in apoptosis, cell cycle, and metastatic pathway in HT29 and SW480 cell lines with the treatment of probiotics extract showed an upregulation in the BAX, CASP3, and CASP9 and down regulation BCl-2, MMP2, and MMP9 genes. Also, a comparison of microRNA expression profiles indicated an increase of miR 34, 135, 25, 16, 195, 27, 98, let7 and a decrease of miR 9, 106b, 17, 21, 155, 221. CONCLUSIONS AND DISCUSSION The findings of this study indicate that probiotics can effectively suppress the proliferation of colorectal cancer cells and even reverse their development. Additionally, the study of cellular genes and miRNA profiles associated with colorectal cancer have demonstrated that our probiotics play a crucial role in CRC prevention by increasing the expression of tumor suppressor microRNAs and their target genes while decreasing oncogenes.
Collapse
Affiliation(s)
- Kosar Naderi Saffar
- Department of Biotechnology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mohaddeseh Larypoor
- Department of Biotechnology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | - Maryam Bikhof Torbati
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, YadegarEmam Khomeini Branch, Shahre-Rey, Iran
| |
Collapse
|
14
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Agosta M, La Greca G, Latteri S. Exploring public interest in gut microbiome dysbiosis, NAFLD, and probiotics using Google Trends. Sci Rep 2024; 14:799. [PMID: 38191502 PMCID: PMC10774379 DOI: 10.1038/s41598-023-50190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
Scientific interest related to the role of gut microbiome dysbiosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) has now been established and is constantly growing. Therefore, balancing dysbiosis, through probiotics, would be a potential therapy. In addition to scientific interest, on the other hand, it is important to evaluate the interest in these topics among the population. This study aimed to analyze, temporally and geographically, the public's interest in gut microbiome dysbiosis, NAFLD, and the use of gut probiotics. The most widely used free tool for analyzing online behavior is Google Trends. Using Google Trends data, we have analyzed worldwide volume searches for the terms "gut microbiome", "dysbiosis", "NAFLD" and "gut probiotic" for the period from 1, January 2007 to 31 December 2022. Google's relative search volume (RSV) was collected for all terms and analyzed temporally and geographically. The RSV for the term "gut microbiome" has a growth rate of more than 1400% followed, by "gut probiotics" (829%), NAFLD (795%), and "dysbiosis" (267%) from 2007 to 2012. In Australia and New Zealand, we found the highest RSV score for the term "dysbiosis" and "gut probiotics". Moreover, we found the highest RSV score for the term "NAFLD" in the three countries: South Korea, Singapore, and the Philippines. Google Trends analysis showed that people all over the world are interested in and aware of gut microbiome dysbiosis, NAFLD, and the use of gut probiotics. These data change over time and have a geographical distribution that could reflect the epidemiological worldwide condition of NAFLD and the state of the probiotic market.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Marcello Agosta
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy.
| |
Collapse
|
15
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
16
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
17
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Lee YZ, Cheng SH, Chang MY, Lin YF, Wu CC, Tsai YC. Neuroprotective Effects of Lactobacillus plantarum PS128 in a Mouse Model of Parkinson’s Disease: The Role of Gut Microbiota and MicroRNAs. Int J Mol Sci 2023; 24:ijms24076794. [PMID: 37047769 PMCID: PMC10095543 DOI: 10.3390/ijms24076794] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by motor deficits and marked neuroinflammation in various brain regions. The pathophysiology of PD is complex and mounting evidence has suggested an association with the dysregulation of microRNAs (miRNAs) and gut dysbiosis. Using a rotenone-induced PD mouse model, we observed that administration of Lactobacillus plantarum PS128 (PS128) significantly improved motor deficits in PD-like mice, accompanied by an increased level of dopamine, reduced dopaminergic neuron loss, reduced microglial activation, reduced levels of inflammatory factors, and enhanced expression of neurotrophic factor in the brain. Notably, the inflammation-related expression of miR-155-5p was significantly upregulated in the proximal colon, midbrain, and striatum of PD-like mice. PS128 reduced the level of miR-155-5p, whereas it increased the expression of suppressor of cytokine signaling 1 (SOCS1), a direct target of miR-155-5p and a critical inhibitor of the inflammatory response in the brain. Alteration of the fecal microbiota in PD-like mice was partially restored by PS128 administration. Among them, Bifidobacterium, Ruminiclostridium_6, Bacteroides, and Alistipes were statistically correlated with the improvement of rotenone-induced motor deficits and the expression of miR-155-5p and SOCS1. Our findings suggested that PS128 ameliorates motor deficits and exerts neuroprotective effects by regulating the gut microbiota and miR-155-5p/SOCS1 pathway in rotenone-induced PD-like mice.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | | | - Min-Yu Chang
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | | | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
20
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Hosseinzadeh R, Bahadori A, Ghorbani M, Mohammadimehr M. Lactobacillus casei condition medium downregulates miR-21 relative expression in HT-29 colorectal cancer cell line. FEMS Microbiol Lett 2023; 370:fnad089. [PMID: 37697675 DOI: 10.1093/femsle/fnad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Previous research has demonstrated promising outcomes regarding the advantageous impact of probiotics in both cancer prevention and treatment. Nevertheless, the precise molecular mechanisms underpinning these effects remain elusive. Recent investigations have proposed a potential involvement of micro ribonucleic acids (miRNAs) in mediating the favorable influence of probiotics on cancerous cells. This study was designed to evaluate the effect of Lactobacillus casei condition medium on miR-21 relative expression in HT-29 colorectal cancer cells. Lactobacillus casei condition medium mixed with RPMI in different proportions (1:1, 1:3, and 1:7) and utilized to treat HT-29 cells for 24 and 48 h. Subsequently, percentage of early and late apoptotic cells were identified using a flow cytometry instrument. A real-time polymerase chain reaction was carried out to determine the relative expression of miR-21. Our findings revealed that L. casei condition medium induces apoptosis in a time- and dose-dependent manner in HT-29 cells. Furthermore, we found a significantly downregulated miR-21 after treatment with high doses of L. casei condition medium after 48 h. Overall, our results provide valuable insights into a potential mechanism through which L. casei condition medium mediates its apoptotic effect in colorectal cancer cells through downregulation of miR-21. However, further investigations are required to unravel its therapeutic, diagnostic, and treatment monitoring potential.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Research Center for Cancer Screening and Epidemiology, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab 4543154717, Iran
| | - Mahdi Ghorbani
- Research Center for Cancer Screening and Epidemiology, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran 1411718541, Iran
| |
Collapse
|
22
|
Ju Z, Pan H, Qu C, Xiao L, Zhou M, Wang Y, Luo J, Shen L, Zhou P, Huang R. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulation. Biol Direct 2023; 18:2. [PMID: 36635762 PMCID: PMC9835385 DOI: 10.1186/s13062-023-00357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a major side effect experienced for patients with thoracic cancers after radiotherapy. RIPF is poor prognosis and limited therapeutic options available in clinic. Lactobacillus rhamnosus GG (LGG) is advantaged and widely used for health promotion. However. Whether LGG is applicable for prevention of RIPF and relative underlying mechanism is poorly understood. Here, we reported a unique comprehensive analysis of the impact of LGG and its' derived lncRNA SNHG17 on radiation-induced epithelial-mesenchymal transition (EMT) in vitro and RIPF in vivo. As revealed by high-throughput sequencing, SNHG17 expression was decreased by LGG treatment in A549 cells post radiation and markedly attenuated the radiation-induced EMT progression (p < 0.01). SNHG17 overexpression correlated with poor overall survival in patients with lung cancer. Mechanistically, SNHG17 can stabilize PTBP1 expression through binding to its 3'UTR, whereas the activated PTBP1 can bind with the NICD part of Notch1 to upregulate Notch1 expression and aggravated EMT and lung fibrosis post radiation. However, SNHG17 knockdown inhibited PTBP1 and Notch1 expression and produced the opposite results. Notably, A549 cells treated with LGG also promoted cell apoptosis and increased cell G2/M arrest post radiation. Mice of RIPF treated with LGG decreased SNHG17 expression and attenuated lung fibrosis. Altogether, these data reveal that modulation of radiation-induced EMT and lung fibrosis by treatment with LGG associates with a decrease in SNHG17 expression and the inhibition of SNHG17/PTBP1/Nothch1 axis. Collectively, our results indicate that LGG exerts protective effects in RIPF and SNHG17 holds a potential marker of RIPF recovery in patients with thoracic cancers.
Collapse
Affiliation(s)
- Zhao Ju
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Huiji Pan
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Can Qu
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liang Xiao
- grid.73113.370000 0004 0369 1660Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433 China
| | - Meiling Zhou
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Yin Wang
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Jinhua Luo
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liangfang Shen
- grid.216417.70000 0001 0379 7164Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Pingkun Zhou
- grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China.
| |
Collapse
|
23
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
24
|
Farajipour H, Sadr S, Matin HR, Aschner M, Asemi Z, Banikazemi Z, Mirzaei H, Taghizadeh M. Therapeutic effect of probiotics on metabolic indices and clinical signs in age-related macular degeneration. J Immunoassay Immunochem 2022; 44:229-241. [PMID: 36576143 DOI: 10.1080/15321819.2022.2159765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probiotics positively influence age-related macular degeneration (ARMD) given their propensity to attenuate oxidative and inflammatory stress. We addressed the impact of probiotics on metabolic profiles, clinical indices, inflammatory and oxidative stress parameters in ARMD patients. We performed a randomized, double-blind, placebo-controlled trial analyzing 57 subjects with ARMD aged between 50 and 85 years. Subjects were randomized into two groups, and received daily for 8 weeks either probiotic capsule or placebo. Fasting blood samples were obtained at baseline and after the 8-week intervention for the determination of metabolic profiles and oxidative stress biomarkers. After the 8-week intervention, compared with the placebo, probiotic supplementation significantly increased means HDL-cholesterol (Probiotic group: +3.86±4.42 vs. Placebo group: -0.55±4.93 mg/dL, P = .001), plasma total antioxidant capacity (TAC) (Probiotic group: +77.43±168.30 vs. Placebo group: -23.12±169.22 mmol/L, P = .02) and significantly decreased malondialdehyde (MDA) levels (Probiotic group: -0.18±0.46 vs. Placebo group: +0.18±0.25 µmol/L, P = .001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Overall, an eight-week probiotic administration among ARMD patients had beneficial effects on TAC, MDA and HDL-cholesterol levels; however, it did not affect clinical signs and other metabolic profiles.
Collapse
Affiliation(s)
- Hasan Farajipour
- Department of Ophthalmology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Sadr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Matin
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Sturov NV, Popov SV, Zhukov VA, Lyapunova TV, Rusanova EI, Kobylyanu GN, Kobylyanu GN. Intestinal Microbiota Correction in the Treatment and Prevention of Urinary Tract Infection. Turk J Urol 2022; 48:406-414. [PMID: 36416330 PMCID: PMC9797784 DOI: 10.5152/tud.2022.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intestinal microbiota is a topical subject of modern research. The maintenance of a healthy intestinal micro biota is an important component of homeostasis, and violations of its composition and functions, called dysbiosis, are associated with a number of diseases, including urinary tract infections. Antimicrobial therapy leads to significant changes in the intestinal microbiota and causes the possibility of urinary tract infection recurrence. In this regard, it is important to study methods of microbiota correction in order to restore its structural and functional integrity.
Collapse
Affiliation(s)
- Nikolay V. Sturov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Sergey V. Popov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Vladimir A. Zhukov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation,Corresponding author:Vladimir A. ZhukovE-mail:
| | - Tatiana V. Lyapunova
- Medical Informatics and Telemedicine Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Ekaterina I. Rusanova
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Georgy N. Kobylyanu
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
26
|
Wan Z, Zhang X, Jia X, Qin Y, Sun N, Xin J, Zeng Y, Jing B, Fang J, Pan K, Zeng D, Bai Y, Wang H, Ma H, Ni X. Lactobacillus johnsonii YH1136 plays a protective role against endogenous pathogenic bacteria induced intestinal dysfunction by reconstructing gut microbiota in mice exposed at high altitude. Front Immunol 2022; 13:1007737. [PMID: 36304467 PMCID: PMC9592553 DOI: 10.3389/fimmu.2022.1007737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intestinal microbiota plays an important role in maintaining the microecological balance of the gastrointestinal tract in various animals. Disturbances in the intestinal microbiota may lead to the proliferation of potentially pathogenic bacteria that become the dominant species, leading to intestinal immune disorders, intestinal inflammation, and other intestinal diseases. Numerous studies have been confirmed that high-altitude exposure affects the normal function of the intestine and the composition of the intestinal microbiota. However, it is still necessary to reveal the changes in intestinal microbiota in high-altitude exposure environments, and clarify the relationship between the proliferation of potentially pathogenic bacteria and intestinal injury in this environment. In addition, explored probiotics that may have preventive effects against intestinal diseases. Methods and results C57BL/6 mice were randomly divided into three groups, a high-altitude group (HA), control group (C), and high-altitude probiotic group (HAP). The HA and HAP groups were subjected to hypoxia modeling for 14 days in a low-pressure oxygen chamber with daily gavage of 0.2 mL of normal saline (HA) and Lactobacillus johnsonii YH1136 bacterial fluid (HAP), while the control group was fed normally. L. johnsonii YH1136 was isolated from feces of a healthy Tibetan girl in Baingoin county, the Nagqu region of the Tibet Autonomous Region, at an altitude of 5000 meters. Our observations revealed that gavage of YH1136 was effective in improving the damage to the intestinal barrier caused by high-altitude exposure to hypoxic environments and helped to reduce the likelihood of pathogenic bacteria infection through the intestinal barrier. It also positively regulates the intestinal microbiota to the extent of Lactobacillus being the dominant microbiome and reducing the number of pathogenic bacteria. By analyzing the expression profile of ileal microRNAs and correlation analysis with intestinal microbiota, we found that Staphylococcus and Corynebacterium1 cooperated with miR-196a-1-3p and miR-3060-3p, respectively, to play a regulatory role in the process of high-altitude hypoxia-induced intestinal injury. Conclusion These findings revealed the beneficial effect of L. johnsonii YH1136 in preventing potential endogenous pathogenic bacteria-induced intestinal dysfunction in high-altitude environments. The mechanism may be related to the regulation of intestinal injury from the perspective of the gut microbiota as well as miRNAs.
Collapse
Affiliation(s)
- Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Xufei Zhang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Xianhao Jia
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Yuhua Qin
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hesong Wang
- Guangzhou Beneco Biotechnology Co. Ltd., Guangzhou, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
28
|
库尔班乃木·卡合曼, 赵 健, 穆凯代斯·艾合买提, 王 汉, 朱 稷, 潘 文, 卡思木江·阿西木江. [E.faecium QH06 alleviates TNBS-induced colonic mucosal injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:976-987. [PMID: 35869759 PMCID: PMC9308865 DOI: 10.12122/j.issn.1673-4254.2022.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity. METHODS Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed. RESULTS The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae. CONCLUSION E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.
Collapse
Affiliation(s)
- 库尔班乃木·卡合曼
- 新疆医科大学第一附属医院康复医学科,新疆 乌鲁木齐 830011Department of Rehabilitation Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - 健锋 赵
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 穆凯代斯·艾合买提
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 汉铭 王
- 新疆医科大学第二临床医学院,新疆 乌鲁木齐 830011Second Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 稷蔚 朱
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 文涛 潘
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 卡思木江·阿西木江
- 新疆医科大学基础医学院物生化学与分子生物学教研室,新疆 乌鲁木齐 830017Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
29
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Arab A, Karimi E, Bagherniya M, Sathyapalan T, Sahebkar A. The effect of probiotic and synbiotic consumption on the most prevalent chemotherapy-related complications: A systematic review of current literature. Curr Med Chem 2022; 29:5462-5473. [PMID: 35430970 DOI: 10.2174/0929867329666220415114343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND To date, many investigations have employed pro-/synbiotic to examine their effects on chemotherapy-related side effects; nevertheless, their findings are inconclusive. To address this issue, we carried out a systematic review to explore the effect of pro-/synbiotic consumption on chemotherapy-related side effects, including nausea, vomiting, mucositis, diarrhea, and constipation in adults using randomized controlled trials (RCTs). METHODS The electronic databases, including PubMed, Scopus, and ISI Web of Sciences, were searched systematically from the earliest available date to March 2021 to identify eligible studies. The quality of the enrolled studies was done based on the Cochrane Collaboration Risk of Bias tool. RESULTS A total of 10 studies involving 788 individuals were included in the current systematic review with a sample size ranging from 25 to 200, and the mean age ranged from 51.04 to 66.91 years. The findings of this study imply that probiotics consumption may be more effective in terms of mucositis compared to other complications. CONCLUSION Further good-quality RCTs with better methodology are called to determine whether and how pro-/synbiotics can prevent or treat chemotherapy-induced side effects. The current systematic review findings may help investigators for future studies regarding the selection study population and probiotic strains.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Sirufo MM, De Pietro F, Catalogna A, Ginaldi L, De Martinis M. The Microbiota-Bone-Allergy Interplay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010282. [PMID: 35010543 PMCID: PMC8750778 DOI: 10.3390/ijerph19010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
Emerging knowledge suggests an increasing importance of gut microbiota in health and disease. Allergy and bone metabolism are closely interconnected, and the possible negative effects of common therapies are not the only aspects of this relationship. The immune system is influenced by the microbiota-host interactions, and several pieces of evidence suggest the existence of an interplay between microbiota, bone metabolism, and allergies. Understanding these inter-relationships is essential for the development of new potential strategies of treatment and prevention targeting microbiota. A wide range of substances and germs, prebiotics and probiotics, are capable of influencing and modifying the microbiota. Prebiotics and probiotics have been shown in several studies to have different actions based on various factors such as sex, hormonal status, and age. In this review, we summarize the latest knowledge on the topic, and we discuss practical implications and the need for further studies.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Alessandra Catalogna
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-429548
| |
Collapse
|
32
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
35
|
Choeisoongnern T, Sirilun S, Waditee-Sirisattha R, Pintha K, Peerajan S, Chaiyasut C. Potential Probiotic Enterococcus faecium OV3-6 and Its Bioactive Peptide as Alternative Bio-Preservation. Foods 2021; 10:foods10102264. [PMID: 34681312 PMCID: PMC8534580 DOI: 10.3390/foods10102264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic Enterococcus faecium OV3-6 and its secreted active peptide were characterized and investigated. The strain survived in simulated gastric and small intestinal conditions at 88.16% and 94.33%, respectively. The safety assessment revealed that the strain was shown α-hemolysis and susceptible to most clinically relevant antibiotics, but intermediate sensitivity to erythromycin and kanamycin was found. It does not harbor any virulence genes except for the efaAfm gene. Both of its living cells and the cell-free supernatants (CFS) of the strain significantly reduced the adhesion of E. coli and S. Typhi on Caco-2 cells. The strain can regulate the secretion of pro and inflammatory cytokines, IL-6 and IL-12 and induce the secretion of anti-inflammatory IL-10 of the Caco-2 cell. The strain can prevent the growth of Gram-positive strains belonging to the genera Bacillus, Carnobacterium, Listeria, and Staphylococcus. It also presented the entP gene that involves the production of bacteriocin named enterocin P. The antimicrobial peptide was matched 40% with 50S ribosomal proteins L29 (7.325 kDa), as revealed by LC-MS/MS. This active peptide exhibits heat stability, is stable over a wide pH range of 2−10, and maintains its activity at −20 and 4 °C for 12 weeks of storage. Altogether, E. faecium OV3-6 thus has potential for consideration as a probiotic and bio-preservative for applied use as a fermented food starter culture and in functional food or feed industries.
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| | | | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| |
Collapse
|
36
|
Hong BS, Kim MR. Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review. Phys Act Nutr 2021; 25:1-7. [PMID: 34315200 PMCID: PMC8342185 DOI: 10.20463/pan.2021.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
[Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such “COVID-19 or microbiota,” “microbiota or microRNA,” and “COVID-19 or probiotics” in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.
Collapse
Affiliation(s)
- Bok Sil Hong
- Life Science Research Center, Cheju Halla University, Jeju, Republic of Korea.,Department of Nursing, Cheju Halla University, Jeju, Republic of Korea
| | - Myoung-Ryu Kim
- Department of Nursing, Cheju Halla University, Jeju, Republic of Korea
| |
Collapse
|
37
|
Jafari SH, Rabiei N, Taghizadieh M, Mirazimi SMA, Kowsari H, Farzin MA, Razaghi Bahabadi Z, Rezaei S, Mohammadi AH, Alirezaei Z, Dashti F, Nejati M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol Res Pract 2021; 224:153528. [PMID: 34171601 DOI: 10.1016/j.prp.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayad Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Kowsari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Farzin
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Nazarian H, Novin MG, Khaleghi S, Habibi B. Small non-coding RNAs in embryonic pre-implantation. Curr Mol Med 2021; 22:287-299. [PMID: 34042034 DOI: 10.2174/1566524021666210526162917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consisted, however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have been highly concerned due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted in embryo implantation. Scholars determined that miRNAs cannot affect the cells and release by cells in the extracellular environment considering facilitating intercellular communication, multiple packaging forms, and preparing indicative data in the case of pathological and physiological conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Habibi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|