1
|
Wu Y, Tao Q, Xie J, Liu X, Zhou Y, Wei C, Zhang C, Wang J, Jin Y. Indole-3-carbinol inhibits PD-L1-mediated immune evasion in hepatocellular carcinoma via suppressing NF-κB p105 Ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156692. [PMID: 40215823 DOI: 10.1016/j.phymed.2025.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and immunotherapy has demonstrated significant therapeutic benefit in HCC. Indole-3-carbinol (I3C), a naturally occurring ingredient of cruciferous vegetables, significantly inhibits the growth of a wide range of tumors. However, its mechanism of action has not been fully elucidated. PURPOSE This study aims to verify and explore the immunomodulatory effect of I3C in HCC models, and to investigate the specific role and mechanism by which I3C affects PD-L1 expression through the ubiquitination of NF-κB p105. METHODS In vitro, I3C was treated with HepG2 cells and relevant indicators were analyzed. In vivo, the mouse HCC model was established and the effect of I3C on tumors and immune function was evaluated. Subsequently, the downstream target of I3C was found through target prediction, molecular docking, and molecular dynamics simulation. Finally, combined therapy was used to further investigate the effect of I3C on mouse HCC tumors. RESULTS We observed that I3C resulted in decreased programmed cell death ligand 1 (PD-L1) expression in HepG2 cells and increased CD8 T cell infiltration in tissues. Subsequently, target prediction and molecular docking demonstrated that I3C was able to efficiently bind to NF-κB p105. In addition, overexpression of NF-κB p105 upregulated PD-L1 expression and almost completely eliminated the inhibitory effect of I3C. Notably, the combination of I3C and PD-L1 monoclonal antibodies showed synergistic anti-tumor effects in the mouse HCC model. CONCLUSION This study demonstrated that I3C inhibits PD-L1-mediated immune evasion in HCC via suppressing NF-κB p105 ubiquitination. The role of I3C in tumors deserves further investigation and provides the foundation for the future development of novel immunotherapeutic drugs.
Collapse
Affiliation(s)
- Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Yuanzhi Zhou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Chengyan Wei
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Chunwei Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Jingjing Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 230032, Hefei, PR China; Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of National Education, Anhui Medical University, 230032, Hefei, PR China.
| |
Collapse
|
2
|
Li HX, Fei J, Xu W, Peng Y, Yan PJ, Xu Y, Qin G, Teng FY. The characterization and validation of regulated cell death-related genes in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2025; 154:114509. [PMID: 40158428 DOI: 10.1016/j.intimp.2025.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Regulated cell death (RCD), a genetically controlled process mediated by specialized molecular pathways (commonly termed programmed cell death), plays pivotal roles in diverse pathophysiological processes. However, the landscape and functional implications of RCD subtypes in chronic rhinosinusitis with nasal polyps (CRSwNP) remain poorly characterized. This study aimed to systematically investigate the involvement of RCD mechanisms in the pathogenesis and progression of CRSwNP. METHODS Transcriptomic datasets (GSE136825, GSE23552, GSE198950, GSE196169, GSE156285) related to CRSwNP were retrieved from the Gene Expression Omnibus (GEO) database. A comprehensive panel of 18 RCD-associated gene sets was compiled through a systematic literature review. Gene set variation analysis (GSVA) was employed to profile RCD activation patterns in CRSwNP. Integrative bioinformatics approaches including weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression were implemented to identify hub RCD-related genes and construct a cell death index (CDI). Single-cell RNA sequencing (scRNA-seq) data were analyzed to map RCD dynamics across cellular subpopulations. Clinical validation was performed using qRT-PCR quantification of key genes in nasal polyp/inferior turbinate tissues, with the concurrent assessment of symptom severity via visual analogue scale (VAS) scores. RESULTS GSVA revealed significant upregulation of 8 RCD subtypes in CRSwNP: apoptosis, ferroptosis, necroptosis, entotic cell death, lysosome-dependent cell death, NETosis, immunogenic cell death, and anoikis. Pathway enrichment analysis demonstrated that RCD-related differentially expressed genes were predominantly involved in epithelial-mesenchymal transition (EMT) and immune-inflammatory regulation. Furthermore, the WGCNA algorithm and LASSO analysis identified 8 key cell death genes (PTHLH, GRINA, S100A9, SCG2, HMOX1, RNF183, TYROBP, SEMA7A), which were utilized to construct the cell death-related index (CDI). In training and validation cohorts, the CDI was significantly elevated in CRSwNP compared to control and exhibited high diagnostic performance, with elevated scores correlating with enhanced immune cell infiltration. Single-cell resolution analysis uncovered cell type-specific RCD activation patterns. Clinical validation confirmed significantly higher expression of S100A9, PTHLH, and HMOX1 in eosinophilic versus non-eosinophilic polyps. Notably, expression levels of PTHLH, S100A9, HMOX1, GRINA, and TYROBP showed strong positive correlations with VAS scores. CONCLUSIONS Our investigation delineates an RCD activation signature in CRSwNP pathogenesis, characterized by 8 key cell death modalities and their regulatory genes. The novel CDI exhibits promising diagnostic potential, while mechanistic insights suggest RCD pathways may drive disease progression through EMT potentiation and inflammatory cascade amplification. These findings provide a framework for developing RCD-targeted therapeutic strategies in CRSwNP.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yi Peng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Tan H, Zhong Z, Feng X, Luo X, Cao Q, Yang P. Genetic predisposition to Behcet's disease mediated by a IL10RA enhancer polymorphism. Heliyon 2025; 11:e41529. [PMID: 39844988 PMCID: PMC11750533 DOI: 10.1016/j.heliyon.2024.e41529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
Background Several studies suggested the genetic association between IL10RA variants and susceptibility to Behcet's disease (BD). However, the precise mechanism of the association is still unknown. The purpose of this study was to investigate the mechanism underlying the genetic associations between IL10RA polymorphisms and the risk of BD. Methods To analyse the genetic susceptibility to BD mediated by IL10RA causal polymorphisms, we performed a study on data from our previous genome-wide association studies (GWAS), the bioinformatic analysis of post-annotation of GWAS and relevant mechanism verification experiments, including chromatin immunoprecipitation, luciferase gene-reporter assay, electrophoretic mobility shift assays, and enzyme-linked immunosorbent assay. Results Among 125 single nucleotide polymorphisms (SNPs) with P < 1 × 10-5 identified in our previous GWAS study on BD, rs4936415 (G/C) was predicted with the highest conserved score as an expression quantitative-trait-locus SNP for IL10RA in whole blood. There were H3K27ac and H3K4Me1 enhancer-specific enrichments around SNP rs4936415. Luciferase gene-reporter assays revealed that the rs4936415 G-allele construct showed a higher enhancer activity as compared to the empty and the C-allele construct. NF-κB1 was identified to bind the C-allele rather than the G-allele, although the enhancer SNP (rs4936415) region was found to control transcription factor binding sites. Interaction of C-allele and NF-κB1 gene construct resulted in an increased enhancer activity. BD patients showed a significantly lower serum level of the IL-10Rα. Conclusions This study identified a single functional causal SNP, rs4936415, in the IL10RA super-enhancer, conferring BD susceptibility. The protective G-allele of non-coding rs4936415 located inside an enhancer region of IL10RA promoted the enhancer activity and increased the expression of IL10RA.The risk C-allele is able to specifically bind NF-κB1 and, in turn, promotes enhancer activity of IL10RA. This subsequently leads to an increased expression of IL10RA. Low expression of IL-10RA suggests a relative deficiency of NF-κB1 in BD.
Collapse
Affiliation(s)
- Handan Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Xiang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, PR China
| |
Collapse
|
4
|
Jiang Y, Xing W, Li Z, Zhao D, Xiu B, Xi Y, Bai S, Li X, Zhang Z, Zhang W, Li H. The calcium-sensing receptor alleviates endothelial inflammation in atherosclerosis through regulation of integrin β1-NLRP3 inflammasome. FEBS J 2024. [PMID: 39552549 DOI: 10.1111/febs.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries. Endothelial inflammation is key to the initiation and development of AS. The calcium-sensing receptor (CaSR) is expressed in endothelial cells (ECs) but its role in endothelial inflammation during AS remains unclear. This study focused on the involvement of CaSR in regulating endothelial inflammation and its underlying mechanisms, providing novel insights for AS therapy. Here, we observed that CaSR agonist NPS-R568 significantly reduced atherosclerotic lesions and aortic inflammation in high-fat diet (HFD)-fed ApoE-/- mice, while enhancing the expression of CaSR in aortic tissues. In vitro, human umbilical vein endothelial cells (HUVECs) exposed to oxidized low-density lipoprotein (oxLDL) at 20 μg·mL-1 triggered inflammation, as indicated by the upregulation of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-6, and IL-1β expression, along with increased adherence of THP-1 or U937 cells to the HUVECs. Additionally, treatment with 20 μg·mL-1 oxLDL led to downregulation of CaSR expression in HUVECs. The administration of CaSR agonist NPS-R568 or overexpression of CaSR in HUVECs resulted in a significant reversal of inflammation induced by oxLDL. Mechanistically, CaSR was found to mitigate NLRP3 inflammasome activation by downregulating the protein level of integrin β1. In conclusion, our study elucidates the beneficial role of CaSR in reducing endothelial inflammation in AS through the regulation of integrin β1 and the subsequent NLRP3 inflammasome. CaSR emerges as a promising target for potential therapeutic interventions in AS.
Collapse
Affiliation(s)
- Yunge Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, China
| | - Zhong Li
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, China
| | - Defeng Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Bingxu Xiu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Yuhui Xi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Shuzhi Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Xiaoxue Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Zheqi Zhang
- Department of Immunology, Harbin Medical University, China
| | - Weihua Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Hongxia Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| |
Collapse
|
5
|
Shen J, Gong L, Sun Y, Lin J, Hu W, Wei J, Miao X, Gao T, Suo J, Xu J, Chai Y, Bao B, Qian Y, Zheng X. Semaphorin3C identified as mediator of neuroinflammation and microglia polarization after spinal cord injury. iScience 2024; 27:109649. [PMID: 38638567 PMCID: PMC11025009 DOI: 10.1016/j.isci.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Liangzhi Gong
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Wencheng Hu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jiabao Wei
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xin Miao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jinlong Suo
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yun Qian
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
6
|
Rosik J, Kulpa J, Szczepanik M, Pawlik A. The Role of Semaphorins in the Pathogenesis of Rheumatoid Arthritis. Cells 2024; 13:618. [PMID: 38607057 PMCID: PMC11011349 DOI: 10.3390/cells13070618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. Inflammation of the synovial fluid propagates the pathological process of angiogenesis. Semaphorins play a crucial role in the context of endothelial cell function, and their pleiotropic nature has various effects on the further development of RA. This narrative review summarises the various roles of semaphorins in the pathology of RA and whether they could play a role in developing novel RA treatment options.
Collapse
Affiliation(s)
- Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.R.); (J.K.); (M.S.)
| | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.R.); (J.K.); (M.S.)
| |
Collapse
|
7
|
Emery A, Dunning KR, Dinh DT, Akison LK, Robker RL, Russell DL. Dynamic regulation of semaphorin 7A and adhesion receptors in ovarian follicle remodeling and ovulation. Front Cell Dev Biol 2023; 11:1261038. [PMID: 37941899 PMCID: PMC10628455 DOI: 10.3389/fcell.2023.1261038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
The ovarian follicle is a complex structure that protects and helps in the maturation of the oocyte, and then releases it through the controlled molecular and structural remodeling process of ovulation. The progesterone receptor (PGR) has been shown to be essential in regulating ovulation-related gene expression changes. In this study, we found disrupted expression of the cellular adhesion receptor gene Sema7A in the granulosa cells of PGR-/- mice during ovulation. We subsequently found that expression of Sema7A in preovulatory follicles is promoted by gonadotropins and hypoxia, establishing an asymmetrical pattern with the SEMA7A protein enriched at the apex of large antral follicles. Sema7A expression was downregulated through a PGR-dependent mechanism in the periovulatory period, the abundance of SEMA7A protein was reduced, and the asymmetric pattern became more homogeneous after an ovulatory stimulus. Receptors for Sema7A can either repel or promote intercellular adhesion. During ovulation, striking inverse regulation of repulsive Plxnc1 and adhesive Itga5/Itgb1 receptors likely contributes to dramatic tissue remodeling. The adhesive receptor Itga5 was significantly increased in periovulatory granulosa cells and cumulus-oocyte complexes (COCs), and functional assays showed that periovulatory granulosa cells and COCs acquire increased adhesive phenotypes, while Sema7A repels granulosa cell contact. These findings suggest that the regulation of Sema7A and its associated receptors, along with the modulation of integrin α5, may be critical in establishing the multilaminar ovarian follicle structure and facilitating the remodeling and apical release of the cumulus-oocyte complex during ovulation.
Collapse
Affiliation(s)
- Alaknanda Emery
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Kylie R. Dunning
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Doan T. Dinh
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Rebecca L. Robker
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|