1
|
Wan YH, Cheng ZJ, Fan LX, Yang DH, Chen BL, Chen XX, Zhu Q. Tremella fuciformis Polysaccharides Alleviate Early Brain Injury in Experimental Subarachnoid Hemorrhage by Inhibiting the KDR-Mediated P38 MAPK/NF-κB Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04963-w. [PMID: 40263235 DOI: 10.1007/s12035-025-04963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Subarachnoid hemorrhage (SAH) is associated with high mortality and morbidity rates. In its early stages, a substantial influx of blood into the subarachnoid space triggers excessive activation of microglia, which markedly contributes to early brain injury (EBI), a pivotal determinant of poor prognosis. Tremella fuciformis polysaccharides (TFPSs), as acidic heteropolysaccharides from the fruiting bodies of Tremella, exhibit robust anti-inflammatory characteristics and many biological properties. Nonetheless, the impact of TFPSs on EBI after SAH has yet to be reported, and the molecular mechanisms underlying these effects remain elusive. We used in vivo and in vitro models to study the effects of TFPSs on microglia post-SAH. Network pharmacology analysis was used to predict the targets of TFPSs and the pathways through which it exerts its therapeutic effects. These predictions were subsequently corroborated through flow cytometry, Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), and quantitative real‑time polymerase chain reaction, both in vivo and in vitro. After 24 h post-SAH, TFPS-treated mice presented improved neurological function and reduced cerebral edema. TFPSs reversed microglial activation, enhanced phagocytic ability, and reduced neuronal apoptosis. Network pharmacology identified KDR as a potential target of TFPSs, with the P38 MAPK pathway as the downstream pathway. TFPSs attenuated KDR expression, inhibited the P38 MAPK/NF-κB pathway, reduced inflammatory cytokine expression, and increased microglial phagocytic capacity post-SAH. This investigation revealed that TFPSs may ameliorate EBI after SAH, potentially via the regulation of the KDR-mediated P38 MAPK/NF-κB pathway and phagocytic function.
Collapse
Affiliation(s)
- Yu-Hui Wan
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeng-Jing Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling-Xiang Fan
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Hong Yang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing-Lin Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Qing Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Ben WB, Pirjo AM. ATG8 in single membranes: Fresh players of endocytosis and acidic organelle quality control in cancer, neurodegeneration, and inflammation. Biochem Biophys Res Commun 2025; 749:151384. [PMID: 39864381 DOI: 10.1016/j.bbrc.2025.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Ubiquitin-like autophagy-related gene ATG8 proteins are typically associated with degradative quality control via canonical double-membrane macro-autophagosomes in the cell. ATG8 proteins have now stepped forward in non-canonical pathways in single membrane organelles. The growing interest in non-canonical ATG8 roles has been stimulated by recent links to human conditions, especially in the regulation of inflammation, neurodegeneration and cancers. Here, we summarize the evidence linking non-canonical ATG8s to human pathologies and the quality control of acidic V-ATPase-regulated organelles in the cell.
Collapse
Affiliation(s)
- Wang B Ben
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Apaja M Pirjo
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; College of Public Health and Medicine, Flinders University, Bedford Park, SA, 5042, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
3
|
Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijsketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. NPJ Parkinsons Dis 2025; 11:28. [PMID: 39934193 PMCID: PMC11814337 DOI: 10.1038/s41531-025-00872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Efforts to develop disease-modifying treatments for Parkinson's disease (PD) have been hindered by the lack of animal models replicating all hallmarks of PD and the insufficient attention to extra-nigrostriatal regions pathologically critical for the prodromal appearance of non-motor symptoms. Among PD models, 6-hydroxydopamine (6-OHDA) infusion in mice has gained prominence since 2012, primarily focusing on the nigrostriatal region. This study characterized tyrosine hydroxylase-positive neuron and fiber loss across the brain following a unilateral 6-OHDA (20 µg) infusion into the dorsal striatum. Our analysis integrates immunolabeling, brain clearing (iDISCO+), light sheet microscopy, and computational methods, including fMRI and machine learning tools. We also examined sex differences, disease progression, neuroinflammatory responses, and pro-apoptotic signaling in nigrostriatal regions of C57BL/6 mice exposed to varying 6-OHDA dosages (5, 10, or 20 µg) followed by 1, 7, and 14 days of recovery. This comprehensive, spatiotemporal analysis of 6-OHDA-induced pathology was used to map the time course of neuronal degeneration and the onset of neuroinflammation.
Collapse
Affiliation(s)
- Matteo Santoro
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rachel K Lam
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah E Blumenfeld
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Weiqi Tan
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Ciari
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emily K Chu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nay L Saw
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Ryskamp Rijsketic
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jennifer S Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Sun JQ, Sheng B, Gao S, Liu XZ, Cui Y, Peng Z, Chen XX, Ding PF, Zhuang Z, Wu LY, Hang CH, Li W. SIRT2 Promotes NLRP3-Mediated Microglia Pyroptosis and Neuroinflammation via FOXO3a Pathway After Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:11679-11698. [PMID: 39741753 PMCID: PMC11687285 DOI: 10.2147/jir.s487716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose This study primarily elucidating the specific mechanism of SIRT2 on neuroinflammation and microglial pyroptosis in a mouse model of SAH. Patients and Methods CSF were collected from 57 SAH patients and 11 healthy individuals. C57BL/6 mouse SAH model was established using prechiasmatic cistern blood injection and the in vitro hemoglobin (Hb) stimulation microglia model. Lentivirus was used as a vector for RNA interference technology to knock down the SIRT2 gene expression. Small interfering RNA was used to knockdown the expression of FOXO3a. The tools included measurements of brain water content, neurological scores, Western blot, PCR, ELISA, TEM, immunofluorescence, LDH assay, modified Garcia score, and balance beam tests to evaluate changes in pyroptosis and neuroinflammatory responses. Results In CSF samples from SAH patients, elevated levels of SIRT2 and GSDMD were observed, with SIRT2 demonstrating particular diagnostic value for predicting prognosis at the 3-month follow-up. SIRT2 upregulation exacerbated neurological deficits, brain edema, and blood-brain barrier disruption in mice following SAH. SIRT2 increased GSDMD, caspase-1, and IL-1β/IL-18 expression, and amplified GSDMD-positive microglia. FOXO3a was also upregulated post-SAH. siRNA-mediated SIRT2 knockdown ameliorated microglial pyroptosis after SAH. FOXO3a siRNA reduced NLRP3 inflammasome activation and microglial pyroptosis severity, along with neuroinflammation post-SAH. Conclusion In summary, SIRT2 promoted microglial pyroptosis, primarily by increasing the expression and activity of Foxo3a, thereby exacerbating neuroinflammatory damage following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Drum Tower Hospital Clinical College, Xuzhou Medical University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Peng-Fei Ding
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Drum Tower Hospital Clinical College, Xuzhou Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijsketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. RESEARCH SQUARE 2024:rs.3.rs-5206046. [PMID: 39483924 PMCID: PMC11527254 DOI: 10.21203/rs.3.rs-5206046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Efforts to develop disease-modifying treatments for Parkinson's disease (PD) have been hindered by the lack of animal models replicating all hallmarks of PD and the insufficient attention to extra-nigrostriatal regions pathologically critical for the prodromal appearance of non-motor symptoms. Among PD models, 6-hydroxydopamine (6-OHDA) infusion in mice has gained prominence since 2012, primarily focusing on the nigrostriatal region. This study characterized widespread tyrosine hydroxylase-positive neuron and fiber loss across the brain following a unilateral 6-OHDA (20 μg) infusion into the dorsal striatum. Our analysis integrates immunolabeling, brain clearing (iDISCO+), light sheet microscopy, and computational methods, including fMRI and machine learning tools. We also examined sex differences, disease progression, neuroinflammatory responses, and pro-apoptotic signaling in nigrostriatal regions of C57BL/6 mice exposed to varying 6-OHDA dosages (5, 10, or 20 μg). This comprehensive, spatiotemporal analysis of 6-OHDA-induced pathology may guide the future design of experimental PD studies and neurotherapeutic development.
Collapse
Affiliation(s)
| | | | | | - Weiqi Tan
- Stanford University School of Medicine
| | | | | | - Nay L Saw
- Stanford University School of Medicine
| | | | | | | | | |
Collapse
|
6
|
Li Y, Dai Y, Chu L. V-ATPase B2 promotes microglial phagocytosis of myelin debris by inactivating the MAPK signaling pathway. Neuropeptides 2024; 106:102436. [PMID: 38733728 DOI: 10.1016/j.npep.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Microglial phagocytosis of myelin debris is a crucial process for promoting myelin regeneration in conditions such as multiple sclerosis (MS). Vacuolar-ATPase B2 (V-ATPase B2) has been implicated in various cellular processes, but its role in microglial phagocytosis and its potential impact on MS-related responses remain unclear. In this study, we employed BV-2 murine microglial cells to investigate the influence of V-ATPase B2 on the phagocytosis of myelin debris by microglia. The results revealed that V-ATPase B2 expression increased in response to myelin debris exposure. Overexpression of V-ATPase B2 significantly enhanced BV-2 phagocytosis of myelin debris. Additionally, V-ATPase B2 overexpression shifted microglial polarization towards an anti-inflammatory M2 phenotype, coupled with decreased lysosomal pH and enhanced lysosome degradation capacity. Moreover, endoplasmic reticulum (ER) stress inhibitor, 4-PBA, reversed the effects of V-ATPase B2 silencing on ER stress, M2 polarization, and lysosomal degradation of BV-2 cells. The MAPK pathway was inhibited upon V-ATPase B2 overexpression, contributing to heightened myelin debris clearance by BV-2 cells. Notably, MAPK pathway inhibition partially attenuated the inhibitory effects of V-ATPase B2 knockdown on myelin debris clearance. In conclusion, our findings reveal a pivotal role for V-ATPase B2 in promoting microglial phagocytosis of myelin debris by regulating microglial polarization and lysosomal function via the MAPK signaling pathway, suggesting that targeting V-ATPase B2 may hold therapeutic potential for enhancing myelin debris clearance and modulating microglial responses in MS and related neuroinflammatory disorders.
Collapse
Affiliation(s)
- Yao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yuhan Dai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|