1
|
Li Y, Ming R, Zhang T, Gao Z, Wang L, Yang Y, Shen K, Wei C, Zhu Y, Li J, Zheng S, Luo Z, Ding Y, Xuan J, Hu Q, Yang Y, Gu J, Wei C. TCTN1 Induces Fatty Acid Oxidation to Promote Melanoma Metastasis. Cancer Res 2025; 85:84-100. [PMID: 39325960 DOI: 10.1158/0008-5472.can-24-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Metabolic reprogramming promotes and sustains multiple steps of melanoma metastasis. Identification of key regulators of metabolic reprogramming could lead to the development of treatments for preventing and treating metastatic melanoma. In this study, we identified that tectonic family member 1 (TCTN1) promotes melanoma metastasis by increasing fatty acid oxidation (FAO). In clinical melanoma samples, high expression of TCTN1 correlated with increased metastasis and shorter patient survival. Functionally, TCTN1 promoted melanoma invasion and migration in vitro and distant metastasis in vivo and induced a mesenchymal-like phenotype switch. Mechanistically, TCTN1 acted as a protein scaffold to promote the binding of HADHA and HADHB, subunits of the mitochondrial trifunctional protein complex, thus leading to FAO activation. TCTN1-mediated FAO activated the p38/MAPK signaling pathway in melanoma cells, promoting tumor epithelial-mesenchymal transition and stemness. Molecular docking indicated that the prostaglandin F receptor agonist fluprostenol can block HADHA/HADHB binding, which was confirmed experimentally. Treatment with fluprostenol was able to inhibit TCTN1-induced melanoma invasion and metastasis. Taken together, these findings elucidate the mechanism of TCTN1-mediated promotion of melanoma metastasis and support the potential application of fluprostenol for targeted therapy of metastatic melanoma. Significance: TCTN1 activates fatty acid oxidation to induce melanoma mesenchymal phenotype switching and invasion by promoting the binding of the subunits of MTP, which can be targeted with fluprostenol to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Yinlam Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Ren Ming
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Tianyi Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenlu Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yu Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jianrui Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, P. R. China
| | - Zucheng Luo
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yiteng Ding
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiangying Xuan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Qianrong Hu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Yin F, Wei Z, Chen F, Xin C, Chen Q. Molecular targets of primary cilia defects in cancer (Review). Int J Oncol 2022; 61:98. [DOI: 10.3892/ijo.2022.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fengying Yin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zihao Wei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fangman Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chuan Xin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
3
|
Zou D, Yuan Y, Xu L, Lei S, Li X, Lu X, Wang X, Li X, Wang L, Wang Z. PltDB: a blood platelets-based gene expression database for disease investigation. Bioinformatics 2022; 38:3143-3145. [PMID: 35438150 DOI: 10.1093/bioinformatics/btac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/06/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Molecular profiling of blood-based liquid biopsies is a promising disease detection method, which overcomes the limitations of invasive diagnostic strategies. Recently, gene expression profiling of platelets reportedly provides valuable resource for developing new biomarkers for the detection of diseases, including cancer. However, there is no database containing RNAs in platelets. RESULTS In this study, we constructed PltDB (http://www.pltdb-hust.com), a platelets-based gene expression database featuring integration and visualization of RNA expression profiles based on RNA-seq and microarray data spanning both normal individuals and patients with different diseases. PltDB currently contains the expression landscape of mRNAs, lncRNAs, circRNAs, and miRNAs in platelets from patients with different disease types and healthy controls. Moreover, PltDB provides users with the tools for visualizing results of comparison and correlation analysis and for downloading expression profiles and analysis results. A submission interface for the scientific community is also embraced for uploading novel RNA expression profiles derived from platelet samples. PltDB will offer a comprehensive review of the clinical use of platelets, overcome technical problems when analyzing data from diverse studies and serve as a powerful platform for developing new blood biomarkers. AVAILABILITY PltDB is accessible at http://www.pltdb-hust.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Lei
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingbo Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyue Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - XiaoQiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Dong H, Wang Q, Li N, Lv J, Ge L, Yang M, Zhang G, An Y, Wang F, Xie L, Li Y, Zhu W, Zhang H, Zhang M, Guo X. OSgbm: An Online Consensus Survival Analysis Web Server for Glioblastoma. Front Genet 2020; 10:1378. [PMID: 32153627 PMCID: PMC7046682 DOI: 10.3389/fgene.2019.01378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p = 0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.
Collapse
Affiliation(s)
- Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ning Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jiajia Lv
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Linna Ge
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengsi Yang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Chai L, Yang G. MiR-216a-5p targets TCTN1 to inhibit cell proliferation and induce apoptosis in esophageal squamous cell carcinoma. Cell Mol Biol Lett 2019; 24:46. [PMID: 31297133 PMCID: PMC6599256 DOI: 10.1186/s11658-019-0166-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background MiR-216a-5p has been reported to be associated with several tumors, including prostate cancer and melanoma. However, its expression level and potential role in esophageal squamous cell carcinoma (ESCC) remain uncertain. Results Here, we found that miR-216a-5p expression was significantly down-regulated in clinical ESCC tissues and cells. Functional assays were performed to evaluate the biological effects of miR-216a-5p on cell proliferation and cell apoptosis by CCK-8 assay and flow cytometry in ESCC cell lines, EC9706 and TE-9. The results showed that miR-216a-5p overexpression repressed cell proliferation and induced cell apoptosis. Through bioinformatics prediction and luciferase reporter assay, we revealed that miR-216a-5p could directly target tectonic family member 1 (TCTN1). Moreover, TCTN1 was obviously suppressed by miR-216a-5p overexpression. In addition, TCTN1 expression was significantly increased and inversely correlated with the levels of miR-216a-5p in ESCC tissues. More importantly, down-regulation of TCTN1 imitated, while restoration of TCTN reversed the effects of miR-216a-5p on cell proliferation and apoptosis. At the molecular level, we further found that TCTN1 overexpression reversed the effects of miR-216a-5p transfection on the expression of PCNA, Bcl-2 and Bad. Conclusions Our results demonstrate that miR-216a-5p might serve as a tumor suppressor in ESCC cells through negatively regulating TCTN1 expression, indicating the possibility that miR-216a-5p and TCTN1 might be attractive targets for ESCC therapeutic intervention.
Collapse
Affiliation(s)
- Lixun Chai
- Department of Thoracic Surgery, Shanxi Dayi Hospital, No. 99 Dragon City Street, Taiyuan, 030012 Shanxi Province China
| | - Gengpu Yang
- Department of Thoracic Surgery, Shanxi Dayi Hospital, No. 99 Dragon City Street, Taiyuan, 030012 Shanxi Province China
| |
Collapse
|
6
|
Zhi X, Li B, Li Z, Zhang J, Yu J, Zhang L, Xu Z. Adrenergic modulation of AMPK‑dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol 2019; 54:1625-1638. [PMID: 30896863 PMCID: PMC6438426 DOI: 10.3892/ijo.2019.4753] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Epidemiological data show that chronic stress has adverse effects on the incidence and progression of cancer. As a critical target organ for stress hormones, the stomach is frequently subjected to stress-related injury. However, few reports regarding the association between stress and gastric cancer (GC) have been published. The present study aimed to investigate the effect of chronic stress on the growth and survival of GC, and the role of the autophagy process. A restraint-stress procedure over 21 days was used to establish a chronic stress mouse model. Subcutaneous xenografts and gastric orthotopic xenografts were established in BALB/c nude mice. Alzet osmotic minipumps containing either PBS or propranolol hydrochloride was inserted on the nape of the neck 7 days prior to the initiation of restraint stress. The presence of autophagosomes and autolysosomes were examined by electron microscopy. The stress hormone norepinephrine significantly enhanced the proliferation of GC cells. By inhibiting adrenoreceptor expression, it was demonstrated that β2-adrenergic receptor (ADRB2) was the specific β-adrenergic receptor subtype responsible for catecholamine release. In addition, it was demonstrated that the induction of autophagy was a novel consequence of β2-adrenergic activation in GC cells. This was demonstrated by the appearance of double-membrane vesicles, punctuate GFP-RFP-microtubule-associated protein 1 light chain 3 distribution in the cytoplasm and a corresponding increase in autophagic flux. Notably, norepinephrine-induced autophagy was shown to have a tumor-promoting role under conditions of chronic stress in vitro and in vivo. It was further demonstrated that, upon activation of cAMP-response element binding protein, chronic stress promoted autophagic flux through the adenosine 5′-monophosphate-activated protein kinase-unc-51 like autophagy activating kinase 1 (AMPK-ULK1) pathway. Tissue microarray analysis revealed a negative correlation between the expression of ADRB2 and autophagic marker p62/sequestosome-1 in GC tumor samples. Additionally, high protein levels of ADRB2 correlated positively with tumor, node, metastasis stage and poor prognosis in patients with GC. These results establish a novel pathway that chronic stress activates tumor-promoting autophagy to accelerate the progression of GC. The present study is the first, to the best of our knowledge, providing preclinical evidence that chronic stress serves a role in the progression of GC.
Collapse
Affiliation(s)
- Xiaofei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiaxuan Zhang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junbo Yu
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
7
|
Liu W, Wan X, Mu Z, Li F, Wang L, Zhao J, Huang X. MiR-1256 suppresses proliferation and migration of non-small cell lung cancer via regulating TCTN1. Oncol Lett 2018; 16:1708-1714. [PMID: 30008857 PMCID: PMC6036276 DOI: 10.3892/ol.2018.8794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Mounting evidence has shown that miRNA expression is abnormal in various human cancers. Here, we mainly explored the biological function and the potential mechanisms of miR-1256 in non-small cell lung cancer (NSCLC). The miR-1256 mRNA expression was detected by quantitative real-time PCR and tectonic family member 1 (TCTN1) mRNA expression was detected by immunoblotting. The TCTN1 was identified to be the direct and specific target gene of miR-1256 by luciferase reporter assay. Cell proliferation was examined by methyl thiazolyl tetrazolium assay and migration was detected by transwell assay. MiR-1256 expression was downregulated in NSCLC tissues, whereas the expression of TCTN1 was upregulated, compared with normal tissues. We also found that overexpression of miR-1256 in these NSCLC cell lines inhibited cell proliferation and migration. Furthermore, TCTN1 was identified as a direct target of miR-1256 by luciferase reporter assays. Collectively, these data stated that the inhibitory effect of miR-1256 in NSCLC was realized by upregulating TCTN1, suggesting that miR-1256/TCTN1 axis may play a critical role as NSCLC therapeutic target.
Collapse
Affiliation(s)
- Wei Liu
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Xiuwei Wan
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Zongyun Mu
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Fei Li
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Lei Wang
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Jing Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Xiaori Huang
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| |
Collapse
|
8
|
Cano-Rodriguez D, Campagnoli S, Grandi A, Parri M, Camilli ED, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci M, Cordiglieri C, Ruiters MH, Viale G, Terracciano L, Sarmientos P, Abrignani S, Grandi G, Pileri P, Rots MG, Grifantini R. TCTN2: a novel tumor marker with oncogenic properties. Oncotarget 2017; 8:95256-95269. [PMID: 29221125 PMCID: PMC5707019 DOI: 10.18632/oncotarget.20438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Tectonic family member 2 (TCTN2) encodes a transmembrane protein that belongs to the tectonic family, which is involved in ciliary functions. Previous studies have demonstrated the role of tectonics in regulating a variety of signaling pathways at the transition zone of cilia. However, the role of tectonics in cancer is still unclear. Here we identify that TCTN2 is overexpressed in colorectal, lung and ovary cancers. We show that different cancer cell lines express the protein that localizes at the plasma membrane, facing the intracellular milieu. TCTN2 over-expression in cancer cells resulted in an increased ability to form colonies in an anchorage independent way. On the other hand, downregulation of TCTN2 using targeted epigenetic editing in cancer cells significantly reduced colony formation, cell invasiveness, increased apoptosis and impaired assembly of primary cilia. Taken together, our results indicate that TCTN2 acts as an oncogene, making it an interesting cancer-associated protein and a potential candidate for therapeutic applications.
Collapse
Affiliation(s)
- David Cano-Rodriguez
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | | | | | - Elisa De Camilli
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Chaojun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Aurelien Lacombe
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Andrea Pierleoni
- Externautics SpA, Siena, Italy.,Present affiliation: European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcel Hj Ruiters
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido Grandi
- Centre for Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | | | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Renata Grifantini
- Externautics SpA, Siena, Italy.,Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Dai X, Dong M, Yu H, Xie Y, Yu Y, Cao Y, Kong Z, Zhou B, Xu Y, Yang T, Li K. Knockdown of TCTN1 Strongly Decreases Growth of Human Colon Cancer Cells. Med Sci Monit 2017; 23:452-461. [PMID: 28123172 PMCID: PMC5291083 DOI: 10.12659/msm.899595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Tectonic family member 1 (TCTN1), a member of the tectonic family, is involved in several developmental processes and is aberrantly expressed in multiple solid tumors. However, the expression and regulation of TCTN1 in human colorectal cancer (CRC) is still not clear. Material/Methods The expression of TCTN1 mRNA was first explored by using Oncomine microarray datasets. TCTN1 expression was silenced in human CRC cell lines HCT116 and SW1116 via RNA interference (RNAi). Furthermore, we investigated the effect of TCTN1 depletion on CRC cell growth by MTT, colony formation, and flow cytometry in vitro. Results In this study, meta-analysis showed that the expressions of TCTN1 mRNA in CRC specimens were significantly higher than that in normal specimens. Knockdown of TCTN1 expression potently inhibited the abilities of cell proliferation and colony formation as determined. Flow cytometry analysis showed that depletion of TCTN1 could cause cell cycle arrest at the G2/M phase. In addition, Annexin V/7-AAD double-staining indicated that TCTN1 silencing promoted cell apoptosis through down-regulation of caspase 3 and Bcl-2 and upregulation of cleaved caspase 3 and PARP. Conclusions Our results indicate that TCTN1 may be crucial for CRC cell growth, providing a novel alternative to target therapies of CRC. Further research on this topic is warranted.
Collapse
Affiliation(s)
- Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Mingjun Dong
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Hua Yu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yangyang Xie
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yongming Yu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yisheng Cao
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Zhenfang Kong
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Baofeng Zhou
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yidong Xu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Tong Yang
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Keqiang Li
- Clinical Research Center, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
10
|
Liu X, Zou J, Su J, Lu Y, Zhang J, Li L, Yin F. Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol 2015; 48:243-52. [PMID: 26647723 DOI: 10.3892/ijo.2015.3254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 11/05/2022] Open
Abstract
Transient receptor potential cation channel, subfamily C, member 1 (TRPC1) participates in many physiological functions but has also been implicated in cancer development. However, little is known about the role of TRPC1 in ovarian cancer (OC), including the drug resistance of these tumors. In the present study, a significant and consistent downregulation of TRPC1 in drug-resistant OC tissues/cells was determined using real-time quantitative polymerase chain reaction assays and the microarrays deposited in Oncomine and Gene Expression Omnibus (GEO) profiles. Protein/gene-protein/gene and protein-chemical interactions indicated that TRPC1 interacts with 14 proteins/genes and 6 chemicals, all of which are involved in the regulation of drug resistance in OC. Biological process annotation of TRPC1, OC, and drug resistance indicated a role for TRPC1 in drug-resistance-related functions in OC, mainly via the cell cycle, gene expression and cell growth and cell death. Analysis of mRNA-microRNA interactions showed that 8 out of 11 major pathways enriched from 38 predominant microRNAs targeting TRPC1 were involved in the regulation of drug resistance in OC, and 8 out of these top 10 microRNAs were implicated in the drug resistance in ovarian and other cancers. In a clinical analysis using data obtained from The Cancer Genome Atlas project (TCGA) cohort on 341 OC patients, TRPC1 expression was found to differ significantly between grade 2 and grade 3 tumors, with low-level expression correlating with higher tumor grade. This is the first report to show a potential association between the downregulation of TRPC1 and both drug resistance and high histological tumor grade in OC. Our results provide the basis for further investigations of the drug-resistance-related functions of TRPC1 in OC and other forms of cancer.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zou
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Su
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|