1
|
Goel B, Tiwari AK, Pandey RK, Singh AP, Kumar S, Sinha A, Jain SK, Khattri A. Therapeutic approaches for the treatment of head and neck squamous cell carcinoma-An update on clinical trials. Transl Oncol 2022; 21:101426. [PMID: 35460943 PMCID: PMC9046875 DOI: 10.1016/j.tranon.2022.101426] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer with a tobacco consumption and infection with high-risk human papillomavirus (HPV) being major risk factors. Despite advances in numerous therapy modalities, survival rates for HNSCC have not improved considerably; a vast number of clinical outcomes have demonstrated that a combination strategy (the most well-known docetaxel, cisplatin, and 5-fluorouracil) is the most effective treatment choice. Immunotherapy that targets immunological checkpoints is being tested in a number of clinical trials, either alone or in conjunction with chemotherapeutic or targeted therapeutic drugs. Various monoclonal antibodies, such as cetuximab and bevacizumab, which target the EGFR and VEGFR, respectively, as well as other signaling pathway inhibitors, such as temsirolimus and rapamycin, are also being studied for the treatment of HNSCC. We have reviewed the primary targets in active clinical studies in this study, with a particular focus on the medications and drug targets used.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Anoop Kumar Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Rajeev Kumar Pandey
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Akhand Pratap Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai - 410206, Maharashtra, India
| | - Abhishek Sinha
- Department of Oral Medicine & Radiology, Sardar Patel Post Graduate Institute of Dental & Medical Sciences, Lucknow - 226025, Uttar Pradesh, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
3
|
Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Front Oncol 2021; 11:676948. [PMID: 34490084 PMCID: PMC8418074 DOI: 10.3389/fonc.2021.676948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.
Collapse
Affiliation(s)
- Yashika Jawa
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V. Mathan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashu B. Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Zaryouh H, De Pauw I, Baysal H, Peeters M, Vermorken JB, Lardon F, Wouters A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med Res Rev 2021; 42:112-155. [PMID: 33928670 DOI: 10.1002/med.21806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Miao Z, Zhang L, Gu M, Huang J, Wang X, Yan J, Xu Y, Wang L. Preparation of Fraxetin Long Circulating Liposome and Its Anti-enteritis Effect. AAPS PharmSciTech 2021; 22:110. [PMID: 33733385 DOI: 10.1208/s12249-021-01940-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
This study sought to improve the oral bioavailability and enhance the anti-enteritis effect of fraxetin by incorporating it into long circulating liposomes (F-LC-Lipo). The optimal formulation of F-LC-Lipo was obtained via orthogonal design. The particle size, morphology, encapsulation efficiency, stability, and anti-enteritis effect of F-LC-Lipo were evaluated. The particle size of F-LC-Lipo was 166.65 ± 8.75 nm with entrapment efficiency (EE) of 92.18 ± 0.17%. The release rate in different dissolution media (pH 1.2 HCl, DDW, and pH 7.4 PBS) was significantly higher than that of fraxetin solution. Compared with the free fraxetin solution, F-LC-Lipo increased oral bioavailability of fraxetin by 4.43 times (443%). More importantly, F-LC-Lipo could improve the levels of interleukin-1 beta (IL-1β), IL-6, malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), prostaglandin E2 (PEG2), and IL-10 in rats with enteritis. Overall, these results suggested that LC-Lipo may serve as a potential carrier for improving the solubility and oral bioavailability of fraxetin as well as improving its enteritis effect.
Collapse
|
6
|
de Kort WWB, Spelier S, Devriese LA, van Es RJJ, Willems SM. Predictive Value of EGFR-PI3K-AKT-mTOR-Pathway Inhibitor Biomarkers for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Mol Diagn Ther 2021; 25:123-136. [PMID: 33686517 PMCID: PMC7956931 DOI: 10.1007/s40291-021-00518-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Understanding molecular pathogenesis of head and neck squamous cell carcinomas (HNSCC) has considerably improved in the last decades. As a result, novel therapeutic strategies have evolved, amongst which are epidermal growth factor receptor (EGFR)-targeted therapies. With the exception of cetuximab, targeted therapies for HNSCC have not yet been introduced into clinical practice. One important aspect of new treatment regimes in clinical practice is presence of robust biomarkers predictive for therapy response. METHODS We performed a systematic search in PubMed, Embase and the Cochrane library. Articles were included if they investigated a biomarker for targeted therapy in the EGFR-PI3K-AKT-mTOR-pathway. RESULTS Of 83 included articles, 52 were preclinical and 33 were clinical studies (two studies contained both a preclinical and a clinical part). We classified EGFR pathway inhibitor types and investigated the type of biomarker (biomarker on epigenetic, DNA, mRNA or protein level). CONCLUSION Several EGFR-PI3K-AKT-mTOR-pathway inhibitor biomarkers have been researched for HNSCC but few of the investigated biomarkers have been adequately confirmed in clinical trials. A more systematic approach is needed to discover proper biomarkers as stratifying patients is essential to prevent unnecessary costs and side effects.
Collapse
Affiliation(s)
- W. W. B. de Kort
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - S. Spelier
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - L. A. Devriese
- Department of Medical Oncology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - R. J. J. van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
- Department of Head and Neck Surgical Oncology, Utrecht Cancer Center, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - S. M. Willems
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
- Department of Pathology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
7
|
Bai S, Zhang P, Zhang JC, Shen J, Xiang X, Yan YB, Xu ZQ, Zhang J, Long L, Wang C, Shi P, Yang L, Chen W, Liu H. A gene signature associated with prognosis and immune processes in head and neck squamous cell carcinoma. Head Neck 2019; 41:2581-2590. [PMID: 30839132 DOI: 10.1002/hed.25731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis that has not significantly improved in the past several decades. A prognostic-related signature was needed. METHODS The Cancer Genome Atlas and GSE41613 databases were downloaded as a training and validation set, respectively. We identified 12 genes that demonstrated progression and prognostic value, and then, a gene signature was constructed. RESULTS This classification could reflect distinct characteristics, phenotypically and molecularly, among HNSCC tumors. It could stratify patients with significantly different survival rates (median survival: 2083 days vs 927 days; P = 3.85E-08) in the training cohort and validation cohort (P = 0.007) and was significantly involved in immune/inflammatory response and tumor progression processes. CONCLUSIONS This bioinformatics-based signature suggested the presence of two distinct populations of patients with HNSCC with distinguishable phenotypic characteristics and clinical outcomes and might provide insight for new types of immune therapy.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jian-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Xu Xiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ying-Bin Yan
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Zhen-Qi Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Long
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Chao Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Shi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Wei Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| |
Collapse
|
8
|
Kozakiewicz P, Grzybowska-Szatkowska L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7497-7505. [PMID: 29725456 DOI: 10.3892/ol.2018.8300] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the development of standard therapies, including surgery, radiotherapy and chemotherapy, survival rates for head and neck squamous cell carcinoma (HNSCC) have not changed significantly over the past three decades. Complete recovery is achieved in <50% of patients. The treatment of advanced HNSCC frequently requires multimodality therapy and involves significant toxicity. The promising, novel treatment option for patients with HNSCC is molecular-targeted therapies. The best known targeted therapies include: Epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab, panitumumab, zalutumumab and nimotuzumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin. There are also various inhibitors of other pathways and targets, which are promising and require evaluation in further studies.
Collapse
|
9
|
Niehr F, Eder T, Pilz T, Konschak R, Treue D, Klauschen F, Bockmayr M, Türkmen S, Jöhrens K, Budach V, Tinhofer I. Multilayered Omics-Based Analysis of a Head and Neck Cancer Model of Cisplatin Resistance Reveals Intratumoral Heterogeneity and Treatment-Induced Clonal Selection. Clin Cancer Res 2017; 24:158-168. [PMID: 29061642 DOI: 10.1158/1078-0432.ccr-17-2410] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Platinum-based drugs, in particular cisplatin (cis-diamminedichloridoplatinum(II), CDDP), are used for treatment of squamous cell carcinoma of the head and neck (SCCHN). Despite initial responses, CDDP treatment often results in chemoresistance, leading to therapeutic failure. The role of primary resistance at subclonal level and treatment-induced clonal selection in the development of CDDP resistance remains unknown.Experimental Design: By applying targeted next-generation sequencing, fluorescence in situ hybridization, microarray-based transcriptome, and mass spectrometry-based phosphoproteome analysis to the CDDP-sensitive SCCHN cell line FaDu, a CDDP-resistant subline, and single-cell derived subclones, the molecular basis of CDDP resistance was elucidated. The causal relationship between molecular features and resistant phenotypes was determined by siRNA-based gene silencing. The clinical relevance of molecular findings was validated in patients with SCCHN with recurrence after CDDP-based chemoradiation and the TCGA SCCHN dataset.Results: Evidence of primary resistance at clonal level and clonal selection by long-term CDDP treatment was established in the FaDu model. Resistance was associated with aneuploidy of chromosome 17, increased TP53 copy-numbers and overexpression of the gain-of-function (GOF) mutant variant p53R248L siRNA-mediated knockdown established a causal relationship between mutant p53R248L and CDDP resistance. Resistant clones were also characterized by increased activity of the PI3K-AKT-mTOR pathway. The poor prognostic value of GOF TP53 variants and mTOR pathway upregulation was confirmed in the TCGA SCCHN cohort.Conclusions: Our study demonstrates a link of intratumoral heterogeneity and clonal evolution as important mechanisms of drug resistance in SCCHN and establishes mutant GOF TP53 variants and the PI3K/mTOR pathway as molecular targets for treatment optimization. Clin Cancer Res; 24(1); 158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Franziska Niehr
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Theresa Eder
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Tanja Pilz
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Robert Konschak
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Denise Treue
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Frederick Klauschen
- German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany.,Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Michael Bockmayr
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seval Türkmen
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Human Genetics, Berlin, Germany
| | - Korinna Jöhrens
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Volker Budach
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Ingeborg Tinhofer
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Berlin, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| |
Collapse
|
10
|
Schedule-dependent interaction between temsirolimus and cetuximab in head and neck cancer. Anticancer Drugs 2016; 27:533-9. [DOI: 10.1097/cad.0000000000000360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|