1
|
Chaojun L, Pengping L, Yanjun L, Fangyuan Z, Yaning H, Yingbo S, Qi C, Hui L. TJP3 promotes T cell immunity escape and chemoresistance in breast cancer: a comprehensive analysis of anoikis-based prognosis prediction and drug sensitivity stratification. Aging (Albany NY) 2023; 15:12890-12906. [PMID: 37950731 PMCID: PMC10713417 DOI: 10.18632/aging.205208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Overcoming anoikis is a necessity during the metastasis and invasion of tumors. Recently, anoikis has been reported to be involved in tumor immunity and has been used to construct prognosis prediction models. However, the roles of anoikis in regulating tumor immunity and drug sensitivity in breast cancer are still not clear and therefore worth uncovering. METHODS TCGA and GEO data are the source of gene expression profiles, which are used to identify anoikis-related-gene (ARG)-based subtypes. R4.2 is used for data analysis. RESULTS Breast cancer is divided into three subgroups, amongst which shows prognosis differences in pan-cancer cohort, ACC, BLCA, BRCA, LUAD, MESO, PAAD, and SKCM. In breast cancer, it shows significant differences in clinical features, immune cell infiltration and drug sensitivity. Machine learning constructs prognosis prediction model, which is useful to perform chemotherapy sensitivity stratification. Following, TJP3 is identified and verified as the key ARG, up-regulation of which increases tolerance of paclitaxel-induced cell toxicity, accompanied with increased expression of caspas3 and cleaved-caspase3. In addition, Down-regulation of TJP3 weakens the cell migration, which accompanied with increased expression of E-cad and decreased expression of vimentin, twist1, zeb1, and MMP7. Furthermore, the expression level of PD-L1 is negative correlated with TJP3. CONCLUSION ARGs-based subgroup stratification is useful to recognize chemotherapy sensitive cohort, and also is useful to predict clinical outcome. TJP3 promotes chemoresistance, tumor metastasis and potential immunotherapy escape in breast cancer.
Collapse
Affiliation(s)
- Liu Chaojun
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Li Pengping
- Breast Surgery, The First People’s Hospital of Xiaoshan District, Zhejiang, Hangzhou 311000, China
| | - Li Yanjun
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Zhu Fangyuan
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - He Yaning
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Shao Yingbo
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Chen Qi
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Liu Hui
- Department of Breast Surgery, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| |
Collapse
|
2
|
de Nigris F, Meo C, Palinski W. Combination of Genomic Landsscape and 3D Culture Functional Assays Bridges Sarcoma Phenotype to Target and Immunotherapy. Cells 2023; 12:2204. [PMID: 37681936 PMCID: PMC10486752 DOI: 10.3390/cells12172204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic-based precision medicine has not only improved tumour therapy but has also shown its weaknesses. Genomic profiling and mutation analysis have identified alterations that play a major role in sarcoma pathogenesis and evolution. However, they have not been sufficient in predicting tumour vulnerability and advancing treatment. The relative rarity of sarcomas and the genetic heterogeneity between subtypes also stand in the way of gaining statistically significant results from clinical trials. Personalized three-dimensional tumour models that reflect the specific histologic subtype are emerging as functional assays to test anticancer drugs, complementing genomic screening. Here, we provide an overview of current target therapy for sarcomas and discuss functional assays based on 3D models that, by recapitulating the molecular pathways and tumour microenvironment, may predict patient response to treatments. This approach opens new avenues to improve precision medicine when genomic and pathway alterations are not sufficient to guide the choice of the most promising treatment. Furthermore, we discuss the aspects of the 3D culture assays that need to be improved, such as the standardisation of growth conditions and the definition of in vitro responses that can be used as a cut-off for clinical implementation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
3
|
Lin TC. RUNX2 and Cancer. Int J Mol Sci 2023; 24:ijms24087001. [PMID: 37108164 PMCID: PMC10139076 DOI: 10.3390/ijms24087001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the modulation of chondrocyte osteoblast differentiation and hypertrophy. Recently discovered RUNX2 somatic mutations, expressional signatures of RUNX2 in normal tissues and tumors, and the prognostic and clinical significance of RUNX2 in many types of cancer have attracted attention and led RUNX2 to be considered a biomarker for cancer. Many discoveries have illustrated the indirect and direct biological functions of RUNX2 in orchestrating cancer stemness, cancer metastasis, angiogenesis, proliferation, and chemoresistance to anticancer compounds, warranting further exploration of the associated mechanisms to support the development of a novel therapeutic strategy. In this review, we focus mainly on critical and recent research developments, including RUNX2's oncogenic activities, by summarizing and integrating the findings on somatic mutations of RUNX2, transcriptomic studies, clinical information, and discoveries about how the RUNX2-induced signaling pathway modulates malignant progression in cancer. We also comprehensively discuss RUNX2 RNA expression in a pancancer panel and in specific normal cell types at the single-cell level to indicate the potential cell types and sites for tumorigenesis. We expect this review to shed light on the recent mechanistical findings and modulatory role of RUNX2 in cancer progression and provide biological information that can guide new research in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
4
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F, Velaei K. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int 2023; 47:683-698. [PMID: 36453448 DOI: 10.1002/cbin.11970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
The development of effective treatments for cancers requires investigations for a more detailed and comprehensive understanding of the basic cellular mechanisms involved in carcinogenesis, cancer progression, and metastasis. One of those driving mechanisms is anoikis, a special type of apoptosis, which is induced by losing anchorage from the extracellular matrix (ECM). In other words, resisting death in detached cells (cells without ECM) forms an anoikis-resistant phenotype. Since the anoikis-resistance state compensates for the initial steps of cancer metastasis, this review aimed to discuss mechanisms of gaining anoikis/anoikis resistance phenotype in tumor cells. Finally, we highlighted the significance of anoikis in malignancies so as to provide clear insight into cancer diagnosis and therapy development.
Collapse
Affiliation(s)
- Farzad Sattari Fard
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fakhrosadat Sajjadian
- Department of Radiology, Faculty of Para-Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Roles of anoikis in colorectal cancer therapy and the assessment of anoikis-regulatory molecules as therapeutic targets. Pathol Res Pract 2023; 241:154256. [PMID: 36455367 DOI: 10.1016/j.prp.2022.154256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is a deadly malignancy and therapeutic approaches for CRC are evolving every day. Anoikis is a key mechanism for programmed cell death of cancer cells that undergo anchorage-independent growth at a different matrix than the one which is expected. Yet, anoikis is a less studied mechanism of cell death in comparison to other mechanisms such as apoptosis. Relating to this, resistance to anoikis among cancer cells remains critical for improved metastasis and survival in a new environment evading anoikis. Since CRC cells have the ability to metastasize from proximal sites to secondary organs such as liver and promote cancer in those distant sites, a clear knowledge of the mechanisms essential for anchorage-independent growth and subsequent metastasis is necessary to counteract CRC progression and spread. Therefore, the identification of novel drug candidates and studying the roles of anoikis in assisting CRC therapy using such drugs can prevent anchorage-independent cancer cell growth. Additionally, the identification of novel biomarkers or therapeutic targets seems essential for implementing superior therapy, impeding relapse among malignant cells and improving the survival rate of clinical patients. As there are no reviews published on this topic till date, anoikis as a mechanism of cell death and its therapeutic roles in CRC are discussed in this review. In addition, several molecules were identified as therapeutic targets for CRC.
Collapse
|
6
|
Linzer RW, Guida DL, Aminov J, Snider JM, Khalife G, Buyukbayraktar AB, Alhaddad C, Resnick AE, Wang P, Pan CH, Allopenna JJ, Clarke CJ. Dihydroceramide desaturase 1 (DES1) promotes anchorage-independent survival downstream of HER2-driven glucose uptake and metabolism. FASEB J 2022; 36:e22558. [PMID: 36165222 PMCID: PMC9597949 DOI: 10.1096/fj.202200748r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Oncogenic reprogramming of cellular metabolism is a hallmark of many cancers, but our mechanistic understanding of how such dysregulation is linked to tumor behavior remains poor. In this study, we have identified dihydroceramide desaturase (DES1)-which catalyzes the last step in de novo sphingolipid synthesis-as necessary for the acquisition of anchorage-independent survival (AIS), a key cancer enabling biology, and establish DES1 as a downstream effector of HER2-driven glucose uptake and metabolism. We further show that DES1 is sufficient to drive AIS and in vitro tumorigenicity and that increased DES1 levels-found in a third of HER2+ breast cancers-are associated with worse survival outcomes. Taken together, our findings reveal a novel pro-tumor role for DES1 as a transducer of HER2-driven glucose metabolic signals and provide evidence that targeting DES1 is an effective approach for overcoming AIS. Results further suggest that DES1 may have utility as a biomarker of aggressive and metastasis-prone HER2+ breast cancer.
Collapse
Affiliation(s)
- Ryan W Linzer
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Danielle L Guida
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Jonathan Aminov
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Gabrielle Khalife
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - A Burak Buyukbayraktar
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Charbel Alhaddad
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Andrew E Resnick
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Pule Wang
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chun-Hao Pan
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Janet J Allopenna
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Hu X, Wen Y, Tan LY, Wang J, Tang F, Wang YT, Zheng CX, Zhang YQ, Gong TJ, Min L. Exosomal Long Non-Coding RNA ANCR Mediates Drug Resistance in Osteosarcoma. Front Oncol 2022; 11:735254. [PMID: 35096563 PMCID: PMC8789737 DOI: 10.3389/fonc.2021.735254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is rare cancer with bimodal age distribution with peaks observed in children and young adults. Typically, OS is treated with pre-surgery neoadjuvant therapy, surgical excision, and post-surgery chemotherapy. However, the efficacy of treatment on disease prognosis and objective response is not currently optimal, often resulting in drug resistance; in turn, highlighting the need to understand mechanisms driving resistance to therapy in OS patients. Using Doxycycline (Dox)-sensitive and resistant variants of OS cells lines KHOS and U2OS, we found that the resistant variants KHOS-DR and U2OS-DR have significantly higher in vitro proliferation. Treating the Dox-sensitive KHOS/U2OS cells with exosomes isolated from KHOS-DR/U2OS-DR made them resistant to treatment with Dox in vitro and in vivo and enhanced tumor growth and progression, while decreasing overall survival. Expression of the long non-coding RNA (lncRNA) ANCR was significantly higher in the KHOS-DR and U2OS-DR variants. SiRNA-mediated knockdown of ANCR decreased in vitro proliferation, while increasing sensitivity to Dox treatment in the KHOS-DR/U2OS-DR cells. Expression of the exosomal lncRNA ANCR was critical for drug resistance and OS tumor progression in xenografts and was correlated to resistance to Adriamycin and overall survival is patients with OS. These results establish lncRNA ANCR as a critical mediator of resistance to therapy in OS patients, highlighting it as a potential therapeutic target in OS patients.
Collapse
Affiliation(s)
- Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Lin-Yun Tan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Tang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Tian Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan-Xi Zheng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Qi Zhang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao-Jun Gong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Torres HM, VanCleave AM, Vollmer M, Callahan DL, Smithback A, Conn JM, Rodezno-Antunes T, Gao Z, Cao Y, Afeworki Y, Tao J. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers (Basel) 2021; 13:4199. [PMID: 34439353 PMCID: PMC8394112 DOI: 10.3390/cancers13164199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley M. VanCleave
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Mykayla Vollmer
- Medical Student Research Program, University of South Dakota, Vermillion, SD 57069, USA;
| | - Dakota L. Callahan
- Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD 57104, USA;
| | - Austyn Smithback
- Sanford PROMISE Scholar Program, Harrisburg High School, Sioux Falls, SD 57104, USA;
| | - Josephine M. Conn
- Sanford Program for Undergraduate Research, Carleton College, Northfield, MN 55057, USA;
| | - Tania Rodezno-Antunes
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Zili Gao
- Flow Cytometry Core at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Yuxia Cao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
9
|
Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int 2020; 45:858-868. [PMID: 33325136 DOI: 10.1002/cbin.11532] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022]
Abstract
Studies have shown that exosomes can mediate the chemoresistance of drug-resistant cells by transmitting circular RNAs (circRNAs). However, the role of exosome-derived hsa_circ_103801 (exosomal hsa_circ_103801) in osteosarcoma (OS) remains unclear. The level of hsa_circ_103801 was upregulated in the serum exosomes from patients with OS, and OS patients with high hsa_circRNA_103801 expression had a shorter survival time relative to patients with low hsa_circ_103801 expression. The expression of hsa_circ_103801 was upregulated in cisplatin-resistant MG63 (MG63/CDDP) cells compared with that in MG63 cells. In addition, hsa_circ_103801 was highly enriched in exosomes derived from CDDP-resistant OS cells and could be delivered to MG63 and U2OS cells through exosomes. Exosomes derived from CDDP-resistant cells were shown to reduce the sensitivity of MG63 and U2OS cells to CDDP, inhibit apoptosis, and increase the expression of multidrug resistance-associated protein 1 and P-glycoprotein. Moreover, exosomal hsa_circ_103801 could strengthen the promotive effect of exosomes on the chemoresistance of MG63 and U2OS cells to CDDP. Hence, serum exosomal hsa_circ_103801 may serve as an effective prognostic biomarker for OS, and exosomal hsa_circ_103801 could be a potential target for overcoming OS chemoresistance.
Collapse
Affiliation(s)
- Yuanxing Pan
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Yunfei Lin
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Chuan Mi
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol 2020; 83:166-176. [PMID: 33220458 DOI: 10.1016/j.semcancer.2020.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Both genetic and epigenetic mechanisms intimately regulate cancer development and chemoresistance. Different genetic alterations are observed in multiple genes, and most are irreversible. Aside from genetic alterations, epigenetic alterations play a crucial role in cancer. The reversible nature of epigenetic modifications makes them an attractive target for cancer prevention and therapy. Specific epigenetic alteration is also being investigated as a potential biomarker in multiple cancers. c-MYC is one of the most important transcription factors that are centrally implicated in multiple types of cancer cells reprogramming, proliferation, and chemoresistance. c-MYC shows not only genetic alterations but epigenetic changes in multiple cancers. It has been observed that epigenome aberrations can reversibly alter the expression of c-MYC, both transcriptional and translational levels. Understanding the underlying mechanism of the epigenetic alterations of c-MYC, that has its role in multiple levels of cancer pathogenesis, can give a better understanding of various unresolved questions regarding cancer. Recently, some researchers reported that targeting the epigenetic modifiers of c-MYC can successfully inhibit cancer cell proliferation, sensitize the chemoresistant cells, and increase the patient survival rate. As c-MYC is an important transcription factor, epigenetic therapy might be one of the best alternatives for the conventional therapies that assumes the "one-size-fits-all" role. It can also increase the precision of targeting and enhance the effectiveness of treatments among various cancer subtypes. In this review, we highlighted the role of epigenetically modified c-MYC in cancer cell reprogramming, progression, and chemoresistance. We also summarize the potential therapeutic approaches to target these modifications for the prevention of cancer development and chemoresistant phenotypes.
Collapse
|
11
|
Gu Z, Li Z, Xu R, Zhu X, Hu R, Xue Y, Xu W. miR-16-5p Suppresses Progression and Invasion of Osteosarcoma via Targeting at Smad3. Front Pharmacol 2020; 11:1324. [PMID: 32982740 PMCID: PMC7479212 DOI: 10.3389/fphar.2020.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are known to regulate carcinogenesis of osteosarcoma. Although, miR-16-5p is known to exert inhibitory effects on several forms of cancers, its effects on the growth and invasion of osteosarcoma have not been studied. Methods We collected human osteosarcoma specimens and adjacent tissues to detect the expression of miR-16-5p by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. The proliferation, migration, and invasion of MG63 and HOS cells following miR-16-5p overexpression and inhibition were detected with cell counting kit-8, wound healing assay, and Transwell assay, respectively. An expression vector carrying a mutated 3'-untranslated region of mothers against decapentaplegic homolog 3 (Smad3) was constructed. Results The results showed that miR-16-5p expression was downregulated in osteosarcoma tissues and cells as compared with adjacent counterparts, while Smad3 was overexpressed in osteosarcoma cells. The overexpression of miR-16-5p resulted in the inhibition of the proliferation, migration, and invasion of osteosarcoma cells and enhanced the therapeutic effect of cisplatin. These effects were attenuated with miR-16-5p expression inhibition. In cells transfected with miR-16-5p mimic, Smad3 expression decreased, while this effect was absent in the cells carrying mutated Smad3. Conclusions Therefore, miR-16-5p inhibits the growth and invasion of osteosarcoma by targeting Smad3.
Collapse
Affiliation(s)
- Zhijian Gu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikun Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghua Xue
- Department of Neurosurgery, Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Lam T, Aguirre‐Ghiso JA, Geller MA, Aksan A, Azarin SM. Immobilization rapidly selects for chemoresistant ovarian cancer cells with enhanced ability to enter dormancy. Biotechnol Bioeng 2020; 117:3066-3080. [DOI: 10.1002/bit.27479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Tiffany Lam
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Julio A. Aguirre‐Ghiso
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Precision Immunology Institute Icahn School of Medicine at Mount Sinai New York New York
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology University of Minnesota Minneapolis Minnesota
| | - Alptekin Aksan
- Department of Mechanical Engineering University of Minnesota Minneapolis Minnesota
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| |
Collapse
|
13
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
14
|
San TT, Khaenam P, Prachayasittikul V, Sripa B, Kunkeaw N, Chan-on W. Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells. Heliyon 2020; 6:e03255. [PMID: 32051864 PMCID: PMC7002900 DOI: 10.1016/j.heliyon.2020.e03255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Anoikis resistance is a critical feature involved in tumor progression and chemoresistance. Finding approaches to improve the effect of chemotherapy on anoikis-resistant cancer cells is therefore critically important. In this study, we examined the effects of curcumin in anoikis-resistant cholangiocarcinoma (CCA) cells, including HuCCT1 and TFK-1 that were anchorage-independently cultured (AI-cells) using poly (2-hydroxyethyl methacrylate). The AI-CCA cells were treated with curcumin alone or in combination with anti-cancer agents and their responses to each treatment were determined by cell viability assay. Gene expression in AI-cells was determined by quantitative real-time PCR. The potential involvement of angiopoietin-like 4 (ANGPTL4) in anoikis resistance was examined by gene knockdown. It was found that AI-cells tended to resist anti-cancer agents tested, especially AI-HuCCT1, which significantly resisted gemcitabine and suberoylanilide hydroxamic acid (SAHA). Curcumin alone significantly inhibited viability and colony formation of AI-cells. Moreover, curcumin combination significantly enhanced the treatment effect of SAHA on AI-HuCCT1 and AI-TFK-1 cells. Gene expression analysis revealed that ANGPTL4 was markedly upregulated in AI-CCA cells and its knockdown tended to sensitize AI-cells to cell death and treatments. In addition, curcumin treatment decreased phosphorylated STAT3 and expression levels of Mcl-1, HDACs and ANGPTL4. Altogether, these findings reveal the beneficial property of curcumin to potentiate chemotherapeutic effects on anoikis-resistant CCA cells, which might suggest the potential use of curcumin for cancer treatment.
Collapse
Affiliation(s)
- Tin Tin San
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease); Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Corresponding author.
| | - Waraporn Chan-on
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
- Corresponding author.
| |
Collapse
|
15
|
Zanghellini B, Grünewald TA, Burghammer M, Rennhofer H, Liegl-Atzwanger B, Leithner A, Lichtenegger HC. High-resolution large-area imaging of nanoscale structure and mineralization of a sclerosing osteosarcoma in human bone. J Struct Biol 2019; 207:56-66. [PMID: 31004766 DOI: 10.1016/j.jsb.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Osteosarcoma is the most common primary bone cancer type in humans. It is predominantly found in young individuals, with a second peak later in life. The tumour is formed by malignant osteoblasts and consists of collagenous, sometimes also mineralized, bone matrix. While the morphology of osteosarcoma has been well studied, there is virtually no information about the nanostructure of the tumour and changes in mineralization on the nanoscale level. In the present paper, human bone tissue inside, next to and remote from a sclerosing osteosarcoma was studied with small angle x-ray scattering, x-ray diffraction and electron microscopy. Quantitative evaluation of nanostructure parameters was combined with high resolution, large area mapping to obtain microscopic images with nanostructure parameter contrast. It was found that the tumour regions were characterized by a notable reduction in mineral particle size, while the mineral content was even higher than that in normal bone. Furthermore, the normal preferential orientation of mineral particles along the longitudinal direction of corticalis or trabeculae was largely suppressed. Also the bone mineral crystal structure was affected: severe crystal lattice distortions were detected in mineralized tumour tissue pointing to a different ion substitution of hydroxyl apatite in tumorous tissue than in healthy tissue.
Collapse
Affiliation(s)
- Benjamin Zanghellini
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | | | | | - Harald Rennhofer
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | | | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Helga C Lichtenegger
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| |
Collapse
|
16
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, Bartholf DeWitt S, George JT, Kreulen RT, Boss MK, Lazarides AL, Kerr DL, Gerber DG, Sivaraj D, Armstrong AJ, Dewhirst MW, Eward WC, Levine H, Somarelli JA. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol Cancer Res 2019; 17:1391-1402. [PMID: 30862685 PMCID: PMC6548594 DOI: 10.1158/1541-7786.mcr-18-0763] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shengnan Xu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shivee Gilja
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Samantha Shetler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Applied Physics, Rice University, Houston, Texas
| | - Xueyang Wang
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - R Garland Austin
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Runyambo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Alexander J Hish
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - R Timothy Kreulen
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | | | - David L Kerr
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Drew G Gerber
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dharshan Sivaraj
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Andrew J Armstrong
- Solid Tumor Program, Duke University Medical Center, Durham, North Carolina
- Duke Prostate Center, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
17
|
Zhao GS, Zhang Q, Cao Y, Wang Y, Lv YF, Zhang ZS, Zhang Y, Tan QL, Chang Y, Quan ZX, Jiang DM, Guo QN. High expression of ID1 facilitates metastasis in human osteosarcoma by regulating the sensitivity of anoikis via PI3K/AKT depended suppression of the intrinsic apoptotic signaling pathway. Am J Transl Res 2019; 11:2117-2139. [PMID: 31105823 PMCID: PMC6511763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
A lack of understanding of the molecular basis underlying the regulation of metastatic disease and its effective therapy are the primary causes of high mortality in osteosarcoma. Thus, new insights into metastases and novel effective targets for metastatic osteosarcoma are urgently required. Anoikis resistance is considered a hallmark of cancer cells with metastatic ability. However, the molecular mechanism of anoikis is poorly understood in osteosarcoma. We applied immunohistochemistry to investigate the correlation between inhibitor of differentiation or DNA binding 1 (ID1) and clinicopathological features, and investigated the correlation between ID1 and the metastatic behavior of osteosarcoma cells, in vitro and in vivo. The results revealed that ID1 is overexpressed in human osteosarcoma tissues, is positively associated with lung metastases, and is a potential biomarker of poor prognosis. Overexpression of ID1 could increase anoikis insensitivity of osteosarcoma cells to facilitate metastasis through the PI3K/AKT-dependent mitochondrial apoptosis pathway. Knockdown of ID1 partly reversed the high potential of metastasis in anoikis-resistant osteosarcoma cells. Our findings revealed, that ID1 is a candidate molecular target for metastatic potential osteosarcoma by highlighting the role of anoikis resistance. In addition ID1 might be a potential predictor of poor prognosis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guo-Sheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
- Bone and Trauma Center, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401120, People’s Republic of China
| | - Qiao Zhang
- Department of Rehabilitation, Xinqiao Hospital, Army Medical UniversityChongqing 400016, People’s Republic of China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, People’s Republic of China
| | - Yang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, People’s Republic of China
| | - Zhao-Si Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Yuan Zhang
- Department of Orthopaedics, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing 400014, People’s Republic of China
| | - Qiu-Lin Tan
- Department of Pathology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, People’s Republic of China
| | - Yu Chang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Zheng-Xue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Dian-Ming Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
- Bone and Trauma Center, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401120, People’s Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, People’s Republic of China
| |
Collapse
|
18
|
Kawada M, Atsumi S, Wada SI, Sakamoto S. Novel approaches for identification of anti-tumor drugs and new bioactive compounds. J Antibiot (Tokyo) 2017; 71:ja201797. [PMID: 28852178 DOI: 10.1038/ja.2017.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Thanks to the pioneering work done by Professor Hamao Umezawa, bioactive compounds have been used in treatment of several diseases including cancer. In this review, we discuss our work, which focuses on developing new candidates for anti-tumor drugs by screening for bioactive natural compounds in microbial cultures using unique experimental systems. We summarize our recent progress including the following: (1) small-molecule modulators of tumor-stromal cell interactions, (2) inhibitors of three-dimensional spheroid formation of cancer cells, (3) multi-cancer cell panel screening and (4) new experimental animal models for cancer metastasis.The Journal of Antibiotics advance online publication, 30 August 2017; doi:10.1038/ja.2017.97.
Collapse
Affiliation(s)
- Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
- Numazu, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shun-Ichi Wada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shuichi Sakamoto
- Numazu, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shizuoka, Japan
| |
Collapse
|
19
|
Atsumi S, Nosaka C, Adachi H, Kimura T, Kobayashi Y, Takada H, Watanabe T, Ohba SI, Inoue H, Kawada M, Shibasaki M, Shibuya M. New anti-cancer chemicals Ertredin and its derivatives, regulate oxidative phosphorylation and glycolysis and suppress sphere formation in vitro and tumor growth in EGFRvIII-transformed cells. BMC Cancer 2016; 16:496. [PMID: 27431653 PMCID: PMC4949881 DOI: 10.1186/s12885-016-2521-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND EGFRvIII is a mutant form of the epidermal growth factor receptor gene (EGFR) that lacks exons 2-7. The resulting protein does not bind to ligands and is constitutively activated. The expression of EGFRvIII is likely confined to various types of cancer, particularly glioblastomas. Although an anti-EGFRvIII vaccine is of great interest, low-molecular-weight substances are needed to obtain better therapeutic efficacy. Thus, the purpose of this study is to identify low molecular weight substances that can suppress EGFRvIII-dependent transformation. METHODS We constructed a new throughput screening system and searched for substances that decreased cell survival of NIH3T3/EGFRvIII spheres under 3-dimensional (3D)-culture conditions, but retained normal NIH3T3 cell growth under 2D-culture conditions. In vivo activity was examined using a mouse transplantation model, and derivatives were chemically synthesized. Functional characterization of the candidate molecules was investigated using an EGFR kinase assay, immunoprecipitation, western blotting, microarray analysis, quantitative polymerase chain reaction analysis, and measurement of lactate and ATP synthesis. RESULTS In the course of screening 30,000 substances, a reagent, "Ertredin" was found to inhibit anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII cDNA. Ertredin also inhibited sphere formation in cells expressing wild-type EGFR in the presence of EGF. However, it did not affect anchorage-dependent 2D growth of parental NIH3T3 cells. The 3D-growth-inhibitory activity of some derivatives, including those with new structures, was similar to Ertredin. Furthermore, we demonstrated that Ertredin suppressed tumor growth in an allograft transplantation mouse model injected with EGFRvIII- or wild-type EGFR-expressing cells; a clear toxicity to host animals was not observed. Functional characterization of Ertredin in cells expressing EGFRvIII indicated that it stimulated EGFRvIII ubiquitination, suppressed both oxidative phosphorylation and glycolysis under 3D conditions, and promoted cell apoptosis. CONCLUSION We developed a high throughput screening method based on anchorage-independent sphere formation induced by EGFRvIII-dependent transformation. In the course of screening, we identified Ertredin, which inhibited anchorage-independent 3D growth and tumor formation in nude mice. Functional analysis suggests that Ertredin suppresses both mitochondrial oxidative phosphorylation and cytosolic glycolysis in addition to promoting EGFRvIII degradation, and stimulates apoptosis in sphere-forming, EGFRvIII-overexpressing cells.
Collapse
Affiliation(s)
- Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.
| | - Chisato Nosaka
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan
| | - Hayamitsu Adachi
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Tomoyuki Kimura
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Yoshihiko Kobayashi
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Hisashi Takada
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Shun-Ichi Ohba
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Hiroyuki Inoue
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.,Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Masakatsu Shibasaki
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.,Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan.,Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma, Japan
| |
Collapse
|
20
|
Han XG, Du L, Qiao H, Tu B, Wang YG, Qin A, Dai KR, Fan QM, Tang TT. CXCR1 knockdown improves the sensitivity of osteosarcoma to cisplatin. Cancer Lett 2015; 369:405-415. [PMID: 26391645 DOI: 10.1016/j.canlet.2015.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Chemotherapy resistance is a major cause of poor prognoses for osteosarcoma patients. This study aimed to determine whether CXCR1 gene knockdown improves the sensitivity of osteosarcomas to chemotherapy. Both CXCR1 expression and cisplatin sensitivity were investigated and compared in two osteosarcoma cell lines. Sensitivity to the chemotherapy drug cisplatin and apoptosis were investigated with or without stimulation via Interleukin-8 (IL-8), which is a ligand of CXCR1. Furthermore, activation of the Akt signaling pathway was determined. Finally, luciferase-labeled CXCR1-knockdown Saos2-lung cells were injected into the tibiae of nude mice that were treated with cisplatin thereafter. We found that CXCR1 expression and cisplatin sensitivity were negatively correlated in osteosarcoma cell lines. IL-8-induced reduction in sensitivity could be blocked by silencing CXCR1, and CXCR1 knockdown suppressed the Akt signaling pathway. Moreover, CXCR1-knockdown tumors were significantly smaller than control tumors, which was consistent with the luciferase intensity results. The expression levels of IL-8, CXCR1 and p-Akt were suppressed in CXCR1-knockdown cells. Taken together, these data indicate that CXCR1 gene knockdown in osteosarcoma cells improved the sensitivity to chemotherapy and that this process might be regulated in part by the IL-8/CXCR1/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiu-guo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Du
- Department of Orthopedic Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Tu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-gang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-rong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-ming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ting-ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|