1
|
Wu X, Xiong H. The Role of Pharmacogenetic-Based Pharmacokinetic Analysis in Precise Breast Cancer Treatment. Pharmaceutics 2024; 16:1407. [PMID: 39598531 PMCID: PMC11597240 DOI: 10.3390/pharmaceutics16111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Given the high prevalence of breast cancer and the diverse genetic backgrounds of patients, a growing body of research emphasizes the importance of pharmacogenetic-based pharmacokinetic analysis in optimizing treatment outcomes. The treatment of breast cancer involves multiple drugs whose metabolism and efficacy are influenced by individual genetic variations. Genetic polymorphisms in drug-metabolizing enzymes and transport proteins are crucial in the regulation of pharmacokinetics. Our review aims to investigate the opportunities and challenges of pharmacogenomic-based pharmacokinetic analysis as a precision medicine tool in breast cancer management.
Collapse
Affiliation(s)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
2
|
Floris M, Moschella A, Alcalay M, Montella A, Tirelli M, Fontana L, Idda ML, Guarnieri P, Capasso M, Mammì C, Nicoletti P, Miozzo M. Pharmacogenetics in Italy: current landscape and future prospects. Hum Genomics 2024; 18:78. [PMID: 38987819 PMCID: PMC11234611 DOI: 10.1186/s40246-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Antonino Moschella
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Laura Fontana
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Corrado Mammì
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Miozzo
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
4
|
Jia Z, Huang Y, Liu J, Liu G, Li J, Xu H, Jiang Y, Zhang S, Wang Y, Chen G, Qiao G, Li Y. Single nucleotide polymorphisms associated with female breast cancer susceptibility in Chinese population. Gene 2023; 884:147676. [PMID: 37524136 DOI: 10.1016/j.gene.2023.147676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Breast cancer is a complex disease influenced by both external and internal factors, among which genetic factors play a critical role. Single-nucleotide polymorphisms (SNPs) are major contributors to the heritability of breast cancer, and their frequencies vary across ethnic groups. In this study, we aimed to investigate the association between 34 SNPs identified in previous genome-wide association studies (GWAS) and overall breast cancer risk, as well as breast cancer subtypes, in the Chinese female population. To accomplish this, we conducted an extensive association analysis using the high-throughput Sequenom MassARRAY® platform in a case-control study comprising 1848 breast cancer patients and 709 healthy controls. Our analysis, which utilized the SNPassoc package in R based on chi-squared (χ2) test and genetic model analysis, identified significant associations between breast cancer risk and SNP rs12493607 (TGFBR2, risk allele C, OR = 1.28 [1.11-1.47], P = 0.0005), as well as a less conservatively significant association with rs4784227 (CASC16, risk allele T, OR = 1.24 [1.08-1.42], P = 0.0017) and rs2046210 (ESR1, risk allele A, OR = 1.50 [1.16-1.95], P = 0.0016). Furthermore, our stratified analyses revealed that rs12493607 was significantly associated with invasive carcinoma, estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, HER2-negative, and young (aged younger than 45) breast cancer. SNP rs4784227 and rs3803662 (CASC16) were associated with invasive carcinoma and ER-positive breast cancer, while rs2046210 was linked to ductal carcinoma in situ, ER-negative, PR-negative, HER2-positive, and elder (aged more than 45) breast cancers. SNPs rs10484919 (ESR1) and rs1038304 (CCDC170) showed links to HER2-positive breast cancer, and rs616488 (PEX14) with premenopausal breast cancer. In summary, our study shed light on the relationship between SNPs and breast cancer susceptibility within a vast Chinese cohort, supporting the development of polygenetic risk scores for the Chinese population. These findings provide valuable insights into the genetic basis of breast cancer and have important implications for risk prediction, early detection, and personalized treatment of this disease.
Collapse
Affiliation(s)
- Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yansong Huang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiayi Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hengyi Xu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yiwen Jiang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Song Zhang
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Yidan Wang
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Gang Chen
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Guangdong Qiao
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Yalun Li
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
5
|
Cura Y, Sánchez-Martín A, Márquez-Pete N, González-Flores E, Martínez-Martínez F, Pérez-Ramírez C, Jiménez-Morales A. Association of Single-Nucleotide Polymorphisms in Capecitabine Bioactivation Pathway with Adjuvant Therapy Safety in Colorectal Cancer Patients. Pharmaceutics 2023; 15:2548. [PMID: 38004528 PMCID: PMC10675271 DOI: 10.3390/pharmaceutics15112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Capecitabine, an oral prodrug of 5-fluorouracil (5-FU), is part of the standard treatment of colorectal cancer (CRC). Severe adverse dose limiting reactions that impair treatment safety and lead to treatment suspension remain a relevant concern. Single-nucleotide polymorphisms (SNPs) in genes involved in the activation of capecitabine may alter the bioavailability of 5-FU and thereby affect therapy outcomes. The aim of this study was to evaluate the association of these SNPs with severe toxicity and treatment suspension in patients with CRC treated with capecitabine-based therapy. An ambispective cohort study was conducted, including 161 patients with CRC. SNPs were analyzed using real-time PCR with TaqMan® probes. Toxicity was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events v.5.0. CES1 rs71647871-A was associated with a severe hand-foot syndrome (p = 0.030; OR = 11.92; 95% CI = 1.46-73.47; GG vs. A). CDA rs1048977-CC (p = 0.030; OR = 2.30; 95% CI 1.09-5.00; T vs. CC) and capecitabine monotherapy (p = 0.003; OR = 3.13; 95% CI 1.49-6.81) were associated with treatment suspension due to toxicity. SNPs CES1 rs71647871 and CDA rs1048977 may act as potential predictive biomarkers of safety in patients with CRC under capecitabine-based adjuvant therapy.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Almudena Sánchez-Martín
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Noelia Márquez-Pete
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Encarnación González-Flores
- Medical Oncology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Biosanitary Research Institute, Ibs.Granada, 18012 Granada, Spain
| | | | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
6
|
Qazi AS, Akbar S, Saeed RF, Bhatti MZ. Translational Research in Oncology. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:261-311. [DOI: 10.1007/978-981-15-1067-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Jabir FA, Hoidy WH. Pharmacogenetics as Personalized Medicine: Association Investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 Polymorphisms in a Breast Cancer Population in Iraqi Women. Clin Breast Cancer 2018; 18:e863-e868. [DOI: 10.1016/j.clbc.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/03/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
|
8
|
Gao J, Tian X, Zhou J, Cui MZ, Zhang HF, Gao N, Wen Q, Qiao HL. From Genotype to Phenotype: Cytochrome P450 2D6-Mediated Drug Clearance in Humans. Mol Pharm 2017; 14:649-657. [DOI: 10.1021/acs.molpharmaceut.6b00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Gao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Tian
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Zhou
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ming-Zhu Cui
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hai-Feng Zhang
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Gao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qiang Wen
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hai-Ling Qiao
- Institute
of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|