1
|
Chen Q, Yang X, Zhang Q, Yu Z. Association between cathepsins and cardiomyopathy: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40974. [PMID: 39705476 PMCID: PMC11666145 DOI: 10.1097/md.0000000000040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
Research suggests that cathepsins, due to their extensive mechanisms of action, may play a crucial role in cardiomyopathies. However, further studies are necessary to establish causality. This study aims to investigate the causal relationship between cathepsins and various types of cardiomyopathies. This study investigated causal associations between 9 cathepsins and cardiomyopathies, including their subtypes: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy, and restrictive cardiomyopathy, using pooled data from genome-wide association studies. The analyses employed inverse variance weighted (IVW), Mendelian randomization (MR)-Egger, and weighted median methods for univariable MR, reverse MR, and multivariable MR to estimate causality. For sensitivity analyses, we applied Cochran Q test, MR-PRESSO, MR-Egger intercept test, and the leave-one-out method to ensure the robustness and reliability of our findings. Univariable MR analyses indicated that elevated levels of cathepsin E were associated with an increased risk of overall cardiomyopathy (IVW: P = .045, odds ratio [OR] = 1.078, 95% confidence interval [CI] = 1.002-1.160). Conversely, higher levels of cathepsin B were linked to a reduced risk of HCM (IVW: P = .037, OR = 0.856, 95% CI = 0.740-0.990), and higher cathepsin O levels were causally related to a reduced risk of HCM (IVW: P = .04, OR = 0.810, 95% CI = 0.662-0.991). Reverse MR analyses indicated that a higher risk of HCM was causally related to increased levels of cathepsin E (IVW: P = .038, OR = 1.024, 95% CI = 1.001-1.047). Multivariable MR analyses showed that increased cathepsin E levels still correlated with increased overall cardiomyopathy, even after the addition of other types of cathepsins (IVW: P = .0165, OR = 1.005, 95% CI = 1.0176-1.1901), while cathepsin O levels remained causally related to a reduced risk of HCM (IVW: P = .0053, OR = 0.7183, 95% CI = 0.5692-0.9065). Cathepsin L2 was also found to be associated with an increased risk of restrictive cardiomyopathy (IVW: P = .0374, OR = 2.1337, 95% CI = 1.0450-4.3565). This study demonstrates the causal relationship between cathepsins E, B, L2, O and the development of cardiomyopathy. The findings may be crucial for early diagnosis, prognosis prediction, molecular classification, and identifying potential therapeutic targets for cardiomyopathy.
Collapse
Affiliation(s)
- Qiuyun Chen
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Xiuming Yang
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qingyu Zhang
- Department of Cardiology, Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Zongliang Yu
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
- Department of Cardiology, Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, Jiangsu, China
| |
Collapse
|
2
|
Bie P. Plasma concentrations of peptide hormones: Unrealistic levels of vasopressin (AVP), oxytocin (OXT), and brain natriuretic peptide (BNP). Acta Physiol (Oxf) 2024; 240:e14200. [PMID: 39034759 DOI: 10.1111/apha.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Hormones are specific molecules measured in biological fluids by elaborate analytical systems requiring meticulous attention. Variation between laboratories can be expected. However, recently published measurements of AVP, OXT, and BNP in human plasma under basal/control conditions include numbers which, between publications, vary by 100-10 000-fold. Generally, the methods descriptions are scant, at best, and provide no information about quality control measures. Clearly, two results describing the same basal hormone concentration by numbers three orders of magnitude apart are incongruent providing reason for concern. Basal concentrations of bioactive AVP, OXT, and BNP in human plasma are in the order of 1-10 pmol/L. Therefore, assay systems applied to plasma must be able to measure concentrations of less than 1 pmol/L with appropriate specificity and accuracy. Basal concentrations of AVP, OXT, and BNP above 100 pmol/L should be reconsidered, as such results do not reflect bioactive hormone levels in humans, rats, or mice. Any concentration above 1000 pmol/L is of concern because such levels of bioactive hormone may be seen only under extreme conditions, if at all.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Maheshwari S, Patel BM. Unravelling the role of cathepsins in cardiovascular diseases. Mol Biol Rep 2024; 51:579. [PMID: 38668953 DOI: 10.1007/s11033-024-09518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Bhoomika M Patel
- School of Medico-Legal Studies, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, India.
| |
Collapse
|
4
|
Wang C, He Z. Integrating bulk and single-cell RNA sequencing data reveals epithelial-mesenchymal transition molecular subtype and signature to predict prognosis, immunotherapy efficacy, and drug candidates in low-grade gliomas. Front Pharmacol 2023; 14:1276466. [PMID: 38053842 PMCID: PMC10694300 DOI: 10.3389/fphar.2023.1276466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Objective: Epithelial-mesenchymal transition (EMT) is a tightly regulated and dynamic process occurring in both embryonic development and tumor progression. Our study aimed to comprehensively explore the molecular subtypes, immune landscape, and prognostic signature based on EMT-related genes in low-grade gliomas (LGG) in order to facilitate treatment decision-making and drug discovery. Methods: We curated EMT-related genes and performed molecular subtyping with consensus clustering algorithm to determine EMT expression patterns in LGG. The infiltration level of diverse immune cell subsets was evaluated by implementing the single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms. The distinctions in clinical characteristics, mutation landscape, and immune tumor microenvironment (TME) among the subtypes were subjected to further investigation. Gene Set Variation Analysis (GSVA) was performed to explore the biological pathways that were involved in subtypes. The chemo drug sensitivity and immunotherapy of subtypes were estimated through GDSC database and NTP algorithm. To detect EMT subtype-related prognostic gene modules, the analysis of weighted gene co-expression network (WGCNA) was performed. The LASSO algorithm was utilized to construct a prognostic risk model, and its efficacy was verified through an independent CGGA dataset. Finally, the expression of the hub genes from the prognostic model was evaluated through the single-cell dataset and in-vitro experiment. Results: The TCGA-LGG dataset revealed the creation of two molecular subtypes that presented different prognoses, clinical implications, TME, mutation landscapes, chemotherapy, and immunotherapy. A three-gene signature (SLC39A1, CTSA and CLIC1) based on EMT expression pattern were established through WGCNA analysis. Low-risk patients showed a positive outlook, increased immune cell presence, and higher expression of immune checkpoint proteins. In addition, several promising drugs, including birinapant, fluvastatin, clofarabine, dasatinib, tanespimycin, TAK-733, GDC-0152, AZD8330, trametinib and ingenol-mebutate had great potential to the treatment of high risk patients. Finally, CTSA and CLIC1 were highly expressed in monocyte cell through single-cell RNA sequencing analysis. Conclusion: Our research revealed non-negligible role of EMT in the TME diversity and complexity of LGG. A prognostic signature may contribute to the personalized treatment and prognostic determination.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Bajpai AK, Gu Q, Orgil BO, Xu F, Torres-Rojas C, Zhao W, Chen C, Starlard-Davenport A, Jones B, Lebeche D, Towbin JA, Purevjav E, Lu L, Zhang W. Cardiac copper content and its relationship with heart physiology: Insights based on quantitative genetic and functional analyses using BXD family mice. Front Cardiovasc Med 2023; 10:1089963. [PMID: 36818345 PMCID: PMC9931904 DOI: 10.3389/fcvm.2023.1089963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Copper (Cu) is essential for the functioning of various enzymes involved in important cellular and physiological processes. Although critical for normal cardiac function, excessive accumulation, or deficiency of Cu in the myocardium is detrimental to the heart. Fluctuations in cardiac Cu content have been shown to cause cardiac pathologies and imbalance in systemic Cu metabolism. However, the genetic basis underlying cardiac Cu levels and their effects on heart traits remain to be understood. Representing the largest murine genetic reference population, BXD strains have been widely used to explore genotype-phenotype associations and identify quantitative trait loci (QTL) and candidate genes. METHODS Cardiac Cu concentration and heart function in BXD strains were measured, followed by QTL mapping. The candidate genes modulating Cu homeostasis in mice hearts were identified using a multi-criteria scoring/filtering approach. RESULTS Significant correlations were identified between cardiac Cu concentration and left ventricular (LV) internal diameter and volumes at end-diastole and end-systole, demonstrating that the BXDs with higher cardiac Cu levels have larger LV chamber. Conversely, cardiac Cu levels negatively correlated with LV posterior wall thickness, suggesting that lower Cu concentration in the heart is associated with LV hypertrophy. Genetic mapping identified six QTLs containing a total of 217 genes, which were further narrowed down to 21 genes that showed a significant association with cardiac Cu content in mice. Among those, Prex1 and Irx3 are the strongest candidates involved in cardiac Cu modulation. CONCLUSION Cardiac Cu level is significantly correlated with heart chamber size and hypertrophy phenotypes in BXD mice, while being regulated by multiple genes in several QTLs. Prex1 and Irx3 may be involved in modulating Cu metabolism and its downstream effects and warrant further experimental and functional validations.
Collapse
Affiliation(s)
- Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Carolina Torres-Rojas
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chen Chen
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A. Towbin
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
- Pediatric Cardiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections. Int J Mol Sci 2022; 23:ijms232012203. [PMID: 36293059 PMCID: PMC9603766 DOI: 10.3390/ijms232012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.
Collapse
|
8
|
Luo L, Wang X, Wang H, Yang C, Zhang Y, Li X, Xu Z. High cathepsin A protein expression predicts poor prognosis and tumor recurrence of hepatocellular carcinoma patients after curative hepatectomy. Am J Cancer Res 2022; 12:3843-3856. [PMID: 36119821 PMCID: PMC9441997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023] Open
Abstract
Cathepsin A (CTSA) is overexpressed in various types of cancer and is linked to poor clinical outcomes. However, the clinical application of CTSA in HCC has not been explored. In this study, we examined the protein level of CTSA in the archived HCC samples from 161 patients by Immunohistochemistry (IHC). The high protein level of CTSA was significantly correlated to the poor clinicopathological parameters, such as TNM stage, serum AFP level, tumor differentiation, liver cirrhosis, Child-Pugh class, vascular invasion, tumor encapsulation, tumor recurrence, and patient death. In addition, multivariate Cox regression analysis indicated that high CTSA expression was an independent prognostic factor of OS and RFS. We also analyzed the area under the curve (AUC) of the time-dependent receiver operating characteristic (ROC) of CTSA expression for 1-, 3-, and 5-year OS and RFS prediction. Furthermore, we constructed a nomogram that exhibited excellent prediction performance, which was validated by the calibration curve and decision curve analysis. Together, our study demonstrated that CTSA protein level is strongly associated with poor clinical outcome of HCC patients and may be used as a potential diagnostic and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Laibang Luo
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Xuyang Wang
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
- The Fuzong Clinical Medical College of Fujian Medical UniversityFuzhou 350025, Fujian, China
| | - Chengkai Yang
- The Fuzong Clinical Medical College of Fujian Medical UniversityFuzhou 350025, Fujian, China
| | - Youfu Zhang
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Zhidan Xu
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| |
Collapse
|
9
|
Copic D, Direder M, Schossleitner K, Laggner M, Klas K, Bormann D, Ankersmit HJ, Mildner M. Paracrine Factors of Stressed Peripheral Blood Mononuclear Cells Activate Proangiogenic and Anti-Proteolytic Processes in Whole Blood Cells and Protect the Endothelial Barrier. Pharmaceutics 2022; 14:pharmaceutics14081600. [PMID: 36015226 PMCID: PMC9415091 DOI: 10.3390/pharmaceutics14081600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in a variety of preclinical studies. In light of future therapeutic intravenous applications of PBMCsec, we investigated the possible effects of PBMCsec on white blood cells and endothelial cells lining the vasculature. To identify changes in the transcriptional profile, whole blood was drawn from healthy individuals and stimulated with PBMCsec for 8 h ex vivo before further processing for single-cell RNA sequencing. PBMCsec significantly altered the gene signature of granulocytes (17 genes), T-cells (45 genes), B-cells (72 genes), and, most prominently, monocytes (322 genes). We detected a strong upregulation of several tissue-regenerative and proangiogenic cyto- and chemokines in monocytes, including VEGFA, CXCL1, and CXCL5. Intriguingly, inhibitors of endopeptidase activity, such as SERPINB2, were also strongly induced. Measurement of the trans-endothelial electrical resistance of primary human microvascular endothelial cells revealed a strong barrier-protective effect of PBMCsec after barrier disruption. Together, we show that PBMCsec induces angiogenic and proteolytic processes in the blood and is able to attenuate endothelial barrier damage. These regenerative properties suggest that systemic application of PBMCsec might be a promising novel strategy to restore damaged organs.
Collapse
Affiliation(s)
- Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaudia Schossleitner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| |
Collapse
|
10
|
Role of Muscle-Specific Histone Methyltransferase (Smyd1) in Exercise-Induced Cardioprotection against Pathological Remodeling after Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21197010. [PMID: 32977624 PMCID: PMC7582695 DOI: 10.3390/ijms21197010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pathological remodeling is the main detrimental complication after myocardial infarction (MI). Overproduction of reactive oxygen species (ROS) in infarcted myocardium may contribute to this process. Adequate exercise training after MI may reduce oxidative stress-induced cardiac tissue damage and remodeling. SET and MYND domain containing 1 (Smyd1) is a muscle-specific histone methyltransferase which is upregulated by resistance training, may strengthen sarcomere assembly and myofiber folding, and may promote skeletal muscles growth and hypertrophy. However, it remains elusive if Smyd1 has similar functions in post-MI cardiac muscle and participates in exercise-induced cardioprotection. Accordingly, we investigated the effects of interval treadmill exercise on cardiac function, ROS generation, Smyd1 expression, and sarcomere assembly of F-actin in normal and infarcted hearts. Adult male rats were randomly divided into five groups (n = 10/group): control (C), exercise alone (EX), sham-operated (S), MI induced by permanent ligation of left anterior descending coronary artery (MI), and MI with interval exercise training (MI + EX). Exercise training significantly improved post-MI cardiac function and sarcomere assembly of F-actin. The cardioprotective effects were associated with increased Smyd1, Trx1, cTnI, and α-actinin expression as well as upregulated ratio of phosphorylated AMP-activated protein kinase (AMPK)/AMPK, whereas Hsp90, MuRF1, brain natriuretic peptide (BNP) expression, ROS generation, and myocardial fibrosis were attenuated. The improved post-MI cardiac function was associated with increased Smyd1 expression. In cultured H9C2 cardiomyoblasts, in vitro treatment with H2O2 (50 µmol/L) or AMP-activated protein kinase (AMPK) agonist (AICAR, 1 mmol/L) or their combination for 4 h simulated the effects of exercise on levels of ROS and Smyd1. In conclusion, we demonstrated a novel role of Smyd1 in association with post-MI exercise-induced cardioprotection. The moderate level of ROS-induced upregulation of Smyd1 may be an important target for modulating post-MI cardiac function and remodeling.
Collapse
|
11
|
Hohl M, Mayr M, Lang L, Nickel AG, Barallobre-Barreiro J, Yin X, Speer T, Selejan SR, Goettsch C, Erb K, Fecher-Trost C, Reil JC, Linz B, Ruf S, Hübschle T, Maack C, Böhm M, Sadowski T, Linz D. Cathepsin A contributes to left ventricular remodeling by degrading extracellular superoxide dismutase in mice. J Biol Chem 2020; 295:12605-12617. [PMID: 32647007 DOI: 10.1074/jbc.ra120.013488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/29/2020] [Indexed: 11/06/2022] Open
Abstract
In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 μmol/mg tissue/min; CatA-TG, 8.62 μmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 μm; CatA-TG, 21.9 μm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 μl; CatA-TG, 61.9 μl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.
Collapse
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Manuel Mayr
- King's BHF Centre of Research Excellence, The James Black Centre, London, United Kingdom
| | - Lisa Lang
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Universitätsklinikum Würzburg, Deutsches Zentrum für Herzinsuffizienz (DZHI), Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | | | - Xiaoke Yin
- King's BHF Centre of Research Excellence, The James Black Centre, London, United Kingdom
| | - Thimoteus Speer
- Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany
| | | | - Claudia Goettsch
- Medizinische Fakultät, Medizinische Klinik 1, Kardiologie, Universitätsklinikum, Aachen, Germany
| | - Katharina Erb
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Universität des Saarlandes, Homburg/Saar, Germany
| | - Jan-Christian Reil
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Klinik für Innere Medizin II, Universitäres Herzzentrum, Lübeck, Germany
| | - Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Christoph Maack
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Universitätsklinikum Würzburg, Deutsches Zentrum für Herzinsuffizienz (DZHI), Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | | | - Dominik Linz
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany .,University Maastricht, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.,Department of Cardiology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
13
|
Khavrutskii IV, Compton JR, Jurkouich KM, Legler PM. Paired Carboxylic Acids in Enzymes and Their Role in Selective Substrate Binding, Catalysis, and Unusually Shifted p Ka Values. Biochemistry 2019; 58:5351-5365. [PMID: 31192586 DOI: 10.1021/acs.biochem.9b00429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cathepsin A (CatA, EC 3.4.16.5, UniProtKB P10619 ) is a human lysosomal carboxypeptidase. Counterintuitively, crystal structures of CatA and its homologues show a cluster of Glu and Asp residues binding the C-terminal carboxylic acid of the product or inhibitor. Each of these enzymes functions in an acidic environment and contains a highly conserved pair of Glu residues with side chain carboxyl group oxygens that are approximately 2.3-2.6 Å apart. In small molecules, carboxyl groups separated by ∼3 Å can overcome the repulsive interaction by protonation of one of the two groups. The pKa of one group increases (pKa ∼ 11) and can be as much as ∼6 pH units higher than the paired group. Consequently, at low and neutral pH, one carboxylate can carry a net negative charge while the other can remain protonated and neutral. In CatA, E69 and E149 form a Glu pair that is important to catalysis as evidenced by the 56-fold decrease in kcat/Km in the E69Q/E149Q variant. Here, we have measured the pH dependencies of log(kcat), log(Km), and log(kcat/Km) for wild type CatA and its variants and have compared the measured pKa with calculated values. We propose a substrate-assisted mechanism in which the high pKa of E149 (>8.5) favors the binding of the carboxylate form of the substrate and promotes the abstraction of the proton from H429 of the catalytic triad effectively decreasing its pKa in a low-pH environment. We also identify a similar motif consisting of a pair of histidines in S-formylglutathione hydrolase.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Armed Forces Radiobiology Research Institute , Uniformed Services University , Bethesda , Maryland 20889-5648 , United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| | - Kayla M Jurkouich
- Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| |
Collapse
|
14
|
Hohl M, Erb K, Lang L, Ruf S, Hübschle T, Dhein S, Linz W, Elliott AD, Sanders P, Zamyatkin O, Böhm M, Schotten U, Sadowski T, Linz D. Cathepsin A Mediates Ventricular Remote Remodeling and Atrial Cardiomyopathy in Rats With Ventricular Ischemia/Reperfusion. JACC Basic Transl Sci 2019; 4:332-344. [PMID: 31312757 PMCID: PMC6609908 DOI: 10.1016/j.jacbts.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
After myocardial infarction, remote ventricular remodeling and atrial cardiomyopathy progress despite successful revascularization. In a rat model of ventricular ischemia/reperfusion, pharmacological inhibition of the protease activity of cathepsin A initiated at the time point of reperfusion prevented extracellular matrix remodeling in the atrium and the ventricle remote from the infarcted area. This scenario was associated with preservation of more viable ventricular myocardium and the prevention of an arrhythmogenic and functional substrate for atrial fibrillation. Remote ventricular extracellular matrix remodeling and atrial cardiomyopathy may represent a promising target for pharmacological atrial fibrillation upstream therapy following myocardial infarction.
Collapse
Key Words
- AF, atrial fibrillation
- CatA, cathepsin A
- Cx43, connexin 43
- ECM, extracellular matrix
- I/R, ischemia/reperfusion
- ICM, ischemic cardiomyopathy
- LA, left atrial
- LAD, left anterior descending coronary artery
- LV, left ventricular
- MRI, magnetic resonance imaging
- PL, permanent left anterior descending ligation
- SAR, (S)-3-{[1-(2-Fluoro-phenyl)-5-methoxy-1H-pyrazole-3-carbonyl]-amino}-3-o-tolyl-propionic-acid
- atrial cardiomyopathy
- atrial fibrillation
- ischemia/reperfusion
- mRNA, messenger ribonucleic acid
- myocardial infarction
- remote remodeling
Collapse
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Katharina Erb
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Lisa Lang
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Stefan Dhein
- Herzzentrum Leipzig Abt. Herzchirurgie, Leipzig, Germany
| | | | - Adrian D. Elliott
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Olesja Zamyatkin
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Schotten
- Department of Physiology, University of Maastricht, Maastricht, the Netherlands
| | | | - Dominik Linz
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Randy T. Cowling
- Department of Medicine, Division of Cardiovascular Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
16
|
Houde M, Schwertani A, Touil H, Desbiens L, Sarrhini O, Lecomte R, Lepage M, Gagnon H, Takai S, Pejler G, Jacques D, Gobeil F, Day R, D'Orléans-Juste P. Mouse Mast Cell Protease 4 Deletion Protects Heart Function and Survival After Permanent Myocardial Infarction. Front Pharmacol 2018; 9:868. [PMID: 30233357 PMCID: PMC6127244 DOI: 10.3389/fphar.2018.00868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Chymase, a mast cell serine protease involved in the generation of multiple cardiovascular factors, such as angiotensin II and endothelin-1 (ET-1), is elevated and participates in tissue degeneration after permanent myocardial infarction (PMI). Anesthetized 4-month old male wild-type (WT) C57BL/6J mice and mouse mast cell protease-4 knockout (mMCP-4 KO) congeners were subjected to ligation of the left anterior descending (LAD) coronary artery. A group of mice was then subjected to Kaplan-Meier 28-day survival analysis. In another group of mice, 18F-fluorodeoxyglucose positron emission tomography (PET) was performed to evaluate heart function and the infarcted zone 3 days post-PMI surgery. Cardiac morphology following PMI was evaluated on formalin-fixed heart slices and glycoproteomic analysis was performed using mass spectrometry. Finally, cardiac and lung tissue content of immunoreactive ET-1 was determined. PMI caused 60% mortality in WT mice, due to left ventricular wall rupture, and 7% in mMCP-4 KO mice. Cardiac PET analysis revealed a significant reduction in left ventricular volume (systolic and diastolic) and preserved the ejection fraction in mMCP-4 KO compared to WT animals. The infarcted area, apoptotic signaling and wall remodeling were significantly decreased in mMCP-4 KO mice compared to their WT congeners, while collagen deposition was increased. Glycoproteomic analysis showed an increase in apolipoprotein A1, an established chymase substrate in mMCP-4 KO mice compared to WT mice post-PMI. ET-1 levels were increased in the lungs of WT, but not mMCP-4 KO mice, 24 h post-PMI. Thus, the genetic deletion of mMCP-4 improved survival and heart function post-PMI.
Collapse
Affiliation(s)
- Martin Houde
- Department of Pharmacology-Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Universiteit Leiden, Leiden, Netherlands
| | - Adel Schwertani
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Hanène Touil
- Department of Pharmacology-Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louisane Desbiens
- Department of Pharmacology-Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, CRCHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, CRCHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, CRCHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience Inc., Sherbrooke, QC, Canada
| | - Shinji Takai
- Department of Innovative Medicine, Osaka Medical College, Osaka, Japan
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fernand Gobeil
- Department of Pharmacology-Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Robert Day
- Department of Surgery, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro D'Orléans-Juste
- Department of Pharmacology-Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
van Rooden EJ, van Esbroeck ACM, Baggelaar MP, Deng H, Florea BI, Marques ARA, Ottenhoff R, Boot RG, Overkleeft HS, Aerts JMFG, van der Stelt M. Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain. Front Neurosci 2018; 12:440. [PMID: 30018533 PMCID: PMC6037894 DOI: 10.3389/fnins.2018.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) α, α/β-hydrolase domain-containing protein 4, α/β-hydrolase domain-containing protein 6, α/β-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL α. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies.
Collapse
Affiliation(s)
- Eva J van Rooden
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Marc P Baggelaar
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hui Deng
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Bogdan I Florea
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - André R A Marques
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rolf G Boot
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S Overkleeft
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
18
|
Shahinian JH, Mayer B, Tholen S, Brehm K, Biniossek ML, Füllgraf H, Kiefer S, Heizmann U, Heilmann C, Rüter F, Grapow M, Reuthebuch OT, Eckstein F, Beyersdorf F, Schilling O, Siepe M. Proteomics highlights decrease of matricellular proteins in left ventricular assist device therapy†. Eur J Cardiothorac Surg 2018; 51:1063-1071. [PMID: 28329269 DOI: 10.1093/ejcts/ezx023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/10/2017] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES We investigated the impact of mechanical unloading with a left ventricular assist device (LVAD) on the myocardial proteome. METHODS We collected 11 patient-matched samples of myocardial left ventricular tissue of patients with non-ischaemic dilate cardiomyopathy, harvested at time of LVAD implant ('pre-LVAD') and heart transplant ('post-LVAD'). Samples were studied by quantitative proteomics. Further we performed histological assessment of deposited collagens and immune infiltration in both pre- and post-LVAD samples. RESULTS A core set of >1700 proteins was identified and quantified at a false discovery rate <1%. The previously established decrease post-LVAD of alpha-1-antichymotrypsin was corroborated. We noted a post-LVAD decrease of matricellular proteins and proteoglycans such as periostin and versican. Also, proteins of the complement system and precursors of cardiac peptide hormones were decreased post-LVAD. An increase post-LVAD was evident for individual proteins linked to the innate immune response, proteins involved in diverse metabolic pathways, and proteins involved in protein synthesis. Histological analysis did not reveal significant alterations post-LVAD of deposited collagens or immune infiltration. The proteomic data further highlighted a pronounced inter-patient heterogeneity with regards to the impact of LVAD therapy on the left ventricular myocardial proteome. Finally, the proteomic data showed differential proteolytic processing in response to LVAD therapy. CONCLUSIONS Our findings underline a strong impact of LVAD therapy on the left ventricular myocardial proteome. Together with previous studies, protein markers of LVAD therapy such as alpha-1-antichymotrypsin are becoming apparent. Further, matricellular proteins are emerging as important components in response to LVAD therapy.
Collapse
Affiliation(s)
| | - Bettina Mayer
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Kerstin Brehm
- Institute of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Martin L Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Hannah Füllgraf
- Institute of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Selina Kiefer
- Institute of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Ulrike Heizmann
- Institute of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Heilmann
- Institute of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Rüter
- Deparment of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
| | - Martin Grapow
- Deparment of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Friedrich Eckstein
- Deparment of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, Heart Centre Freiburg University, Freiburg, Germany
| | - Oliver Schilling
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Matthias Siepe
- Department of Cardiovascular Surgery, Heart Centre Freiburg University, Freiburg, Germany
| |
Collapse
|
19
|
Cardiac drug-drug interaction between HCV-NS5B pronucleotide inhibitors and amiodarone is determined by their specific diastereochemistry. Sci Rep 2017; 7:44820. [PMID: 28327633 PMCID: PMC5361079 DOI: 10.1038/srep44820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/07/2017] [Indexed: 01/03/2023] Open
Abstract
Severe bradycardia/bradyarrhythmia following coadministration of the HCV-NS5B prodrug sofosbuvir with amiodarone was recently reported. Our previous preclinical in vivo experiments demonstrated that only certain HCV-NS5B prodrugs elicit bradycardia when combined with amiodarone. In this study, we evaluate the impact of HCV-NS5B prodrug phosphoramidate diastereochemistry (D-/L-alanine, R-/S-phosphoryl) in vitro and in vivo. Co-applied with amiodarone, L-ala,SP prodrugs increased beating rate and decreased beat amplitude in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), but D-ala,RP produgs, including MK-3682, did not. Stereochemical selectivity on emerging bradycardia was confirmed in vivo. Diastereomer pairs entered cells equally well, and there was no difference in intracellular accumulation of L-ala,SP metabolites ± amiodarone, but no D-ala,RP metabolites were detected. Cathepsin A (CatA) inhibitors attenuated L-ala,SP prodrug metabolite formation, yet exacerbated L-ala,SP + amiodarone effects, implicating the prodrugs in these effects. Experiments indicate that pharmacological effects and metabolic conversion to UTP analog are L-ala,SP prodrug-dependent in cardiomyocytes.
Collapse
|
20
|
Annunziata I, d'Azzo A. Galactosialidosis: historic aspects and overview of investigated and emerging treatment options. Expert Opin Orphan Drugs 2016; 5:131-141. [PMID: 28603679 DOI: 10.1080/21678707.2016.1266933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Galactosialidosis is a glycoprotein storage disease caused by mutations in the CTSA gene, encoding lysosomal protective protein/cathepsin A (PPCA). The enzyme's catalytic activity is distinct from its protective function towards β-galactosidase (β-GAL) and neuraminidase 1 (NEU1), with which PPCA forms a complex. In this configuration the two glycosidases acquire their full activity and stability in lysosomes. Deficiency of PPCA results in combined NEU1/β-GAL deficiency. Because of its low incidence, galactosialidosis is considered an orphan disorder with no therapy yet available. AREAS COVERED This review gives a historic overview on the discovery of PPCA, which defined galactosialidosis as a new clinical entity; the evidence for the existence of the PPCA/NEU1/β-GAL complex; the clinical forms of galactosialidosis and disease-causing CTSA mutations. Ppca-/- mice have proven to be a suitable model to test different therapeutic approaches, paving the way for the development of clinical trials for patients with galactosialidosis. EXPERT OPINION Improved understanding of the molecular bases of disease has sparked renewed incentive from clinicians and scientists alike to develop therapies for rare conditions, like GS, and has increased the willingness of biotech companies to invest in the manufacturing of new therapeutics. Both ERT and gene therapy may become available to patients in the near future.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
21
|
Petrera A, Kern U, Linz D, Gomez-Auli A, Hohl M, Gassenhuber J, Sadowski T, Schilling O. Proteomic Profiling of Cardiomyocyte-Specific Cathepsin A Overexpression Links Cathepsin A to the Oxidative Stress Response. J Proteome Res 2016; 15:3188-95. [PMID: 27432266 DOI: 10.1021/acs.jproteome.6b00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cathepsin A (CTSA) is a lysosomal carboxypeptidase present at the cell surface and secreted outside the cell. Additionally, CTSA binds to β-galactosidase and neuraminidase 1 to protect them from degradation. CTSA has gained attention as a drug target for the treatment of cardiac hypertrophy and heart failure. Here, we investigated the impact of CTSA on the murine cardiac proteome in a mouse model of cardiomyocyte-specific human CTSA overexpression using liquid chromatography-tandem mass spectrometry in conjunction with an isotopic dimethyl labeling strategy. We identified up to 2000 proteins in each of three biological replicates. Statistical analysis by linear models for microarray data (limma) found >300 significantly affected proteins (moderated p-value ≤0.01), thus establishing CTSA as a key modulator of the cardiac proteome. CTSA strongly impaired the balance of the proteolytic system by upregulating several proteases such as cathepsin B, cathepsin D, and cathepsin Z while down-regulating numerous protease inhibitors. Moreover, cardiomyocyte-specific human CTSA overexpression strongly reduced the levels of numerous antioxidative stress proteins, i.e., peroxiredoxins and protein deglycase DJ-1. In vitro, using cultured rat cardiomyocytes, ectopic overexpression of CTSA resulted in accumulation of reactive oxygen species. Collectively, our proteomic and functional data strengthen an association of CTSA with the cellular oxidative stress response.
Collapse
Affiliation(s)
- Agnese Petrera
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Ursula Kern
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Dominik Linz
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes , 66424 Homburg/Saar, Germany
| | - Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes , 66424 Homburg/Saar, Germany
| | - Johann Gassenhuber
- Diabetes Division, Sanofi-Aventis Deutschland GmbH , 65926 Frankfurt, Germany
| | - Thorsten Sadowski
- Diabetes Division, Sanofi-Aventis Deutschland GmbH , 65926 Frankfurt, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Stefan Meier Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|