1
|
Tao N, Sun Q, Ying Y, Wang Y, Gao J. Dermal T cell immunity and key regulatory signaling pathways: Implications in immune-mediated alopecia and hair regeneration. Genes Dis 2025; 12:101518. [PMID: 40520999 PMCID: PMC12167457 DOI: 10.1016/j.gendis.2025.101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/21/2024] [Accepted: 11/02/2024] [Indexed: 06/18/2025] Open
Abstract
Mammalian hair follicles undergo periodic regeneration, with recent research highlighting the immunological niche as a critical regulator of stem cell activity and hair follicle regeneration. Chemotactic signals from hair follicles attract macrophages and T cells, which, in turn, control the resting and differentiation of epithelial stem cells in both healthy and damaged conditions. T cells play a pivotal role in hair follicle regeneration, contributing to injury-induced hair neogenesis and physiologic hair cycling. However, disruption of this interaction can lead to clinically significant immune-mediated alopecia. Both scarring and non-scarring forms of alopecia arise from an imbalance in this dynamic system. In this review, we address the role of T cells in hair follicles, summarize related mechanisms, and highlight key genes involved in T cell differentiation and development. Our aim is to provide insights into the development of hair disorders linked to T cell immune homeostasis and hair follicle regeneration.
Collapse
Affiliation(s)
- Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| |
Collapse
|
2
|
Yang L, Chen Y, Wu Y. The hypoxia signaling pathway in the development of acute myeloid leukemia. Biomed Pharmacother 2025; 186:117999. [PMID: 40188762 DOI: 10.1016/j.biopha.2025.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Although advances in targeted agents have greatly improved the prognosis of patients with AML in recent years, those who fail to achieve remission or relapse after remission are still in urgent need of novel therapeutic strategies. The hypoxia signaling pathway is involved in various biological processes, and hypoxia-inducible factor alpha (HIF-α) is considered a potential therapeutic target in AML. The bone marrow microenvironment is known to be in a state of chronic hypoxia, which is important for hematopoietic stem cells to maintain quiescence, and provides leukemic stem cells with a refuge from immune defenses and chemotherapeutic agents. Therefore, this review aims to explore the role of the HIF-α signaling pathway in the development of AML.
Collapse
Affiliation(s)
- Liqing Yang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
3
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
4
|
Luo J, Wang H, Chen J, Wei X, Feng J, Zhang Y, Zhou Y. The Application of Drugs and Nano-Therapies Targeting Immune Cells in Hypoxic Inflammation. Int J Nanomedicine 2024; 19:3441-3459. [PMID: 38617798 PMCID: PMC11015843 DOI: 10.2147/ijn.s456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Immune cells are pivotal in the dynamic interplay between hypoxia and inflammation. During hypoxic conditions, HIF-1α, a crucial transcription factor, facilitates the adaptation of immune cells to the hypoxic micro-environment. This adaptation includes regulating immune cell metabolism, significantly impacting inflammation development. Strategies for anti-inflammatory and hypoxic relief have been proposed, aiming to disrupt the hypoxia-inflammation nexus. Research extensively focuses on anti-inflammatory agents and materials that target immune cells. These primarily mitigate hypoxic inflammation by encouraging M2-macrophage polarization, restraining neutrophil proliferation and infiltration, and maintaining Treg/TH17 balance. Additionally, oxygen-releasing nano-materials play a significant role. By alleviating hypoxia and clearing reactive oxygen species (ROS), these nano-materials indirectly influence immune cell functions. This paper delves into the response of immune cells under hypoxic conditions and the resultant effects on inflammation. It provides a comprehensive overview of various therapies targeting specific immune cells for anti-inflammatory purposes and explores nano-materials that either carry or generate oxygen to alleviate anoxic micro-environments.
Collapse
Affiliation(s)
- Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
5
|
Wu Y, Yu XZ. Tipping the GVH/GVL balance by targeting HIF1α. Cell Rep Med 2023; 4:101295. [PMID: 37992679 PMCID: PMC10694739 DOI: 10.1016/j.xcrm.2023.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Promoting GVL activity while eliminating GVHD is the utmost goal to treat hematological malignancies with allo-HCT. Bailey et al. demonstrate that targeting HIF1α can favor GVL activity while limiting GVHD after allo-HCT even in combination with immune checkpoint inhibition.1.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol 2023; 14:1211221. [PMID: 37457701 PMCID: PMC10338923 DOI: 10.3389/fimmu.2023.1211221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular metabolism plays a critical role in determining the fate and function of cells. Metabolic reprogramming and its byproducts have a complex impact on cellular activities. In quiescent T cells, oxidative phosphorylation (OXPHOS) is the primary pathway for survival. However, upon antigen activation, T cells undergo rapid metabolic reprogramming, characterized by an elevation in both glycolysis and OXPHOS. While both pathways are induced, the balance predominantly shifts towards glycolysis, enabling T cells to rapidly proliferate and enhance their functionality, representing the most distinctive signature during activation. Metabolic processes generate various small molecules resulting from enzyme-catalyzed reactions, which also modulate protein function and exert regulatory control. Notably, recent studies have revealed the direct modification of histones, known as lactylation, by lactate derived from glycolysis. This lactylation process influences gene transcription and adds a novel variable to the regulation of gene expression. Protein lactylation has been identified as an essential mechanism by which lactate exerts its diverse functions, contributing to crucial biological processes such as uterine remodeling, tumor proliferation, neural system regulation, and metabolic regulation. This review focuses on the metabolic reprogramming of T cells, explores the interplay between lactate and the immune system, highlights the impact of lactylation on cellular function, and elucidates the intersection of metabolic reprogramming and epigenetics.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
8
|
Teng Y, Xia L, Huang Z, Yao L, Wu Q. Long noncoding RNA LINC01882 ameliorates aGVHD via skewing CD4 + T cell differentiation toward Treg cells. Am J Physiol Cell Physiol 2023; 324:C395-C406. [PMID: 36409171 DOI: 10.1152/ajpcell.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe T cell-mediated immune response after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the molecular mechanisms remain to be elucidated and novel treatments are necessary to be developed. In the present study, we found that the expression of long noncoding RNA (lncRNA) LINC01882 decreased significantly in the peripheral blood CD4+ T lymphocytes of patients with aGVHD than non-aGVHD patients. In addition, lncRNA LINC01882 overexpression promoted Treg differentiation but exhibited no effects on Th17 percentages, while its knockdown resulted in opposite effects. Mechanistically, lncRNA LINC01882 could competitively bind with let-7b-5p to prevent the degradation of its target gene smad2, which acts as a promoter in Treg differentiation. Furthermore, the mice cotransplanted with LINC01882-overexpressed CD4+ T cells with PBMCs had a lower histological GVHD score and higher survival rate compared with control mice. In conclusion, our study discloses a novel LINC01882/let-7b-5p/smad2 pathway in the modulation of aGVHD and indicates that lncRNA LINC01882 could be a promising biomarker and therapeutic target for patients with aGVHD.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13:1073971. [PMID: 36761171 PMCID: PMC9905447 DOI: 10.3389/fimmu.2022.1073971] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Wang-Dong Xu,
| |
Collapse
|
10
|
Wang J, Hao L, Li X, Liu S. W18O49@EP nanoparticles improve the anti-tumor effect of radiotherapy and photodynamic therapy by avoiding the limitation of hypoxia. Front Bioeng Biotechnol 2022; 10:1060467. [DOI: 10.3389/fbioe.2022.1060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Insufficient oxygen supply at the tumor site and hypoxia caused during tumor treatment lead to a poor therapeutic effect and poor prognosis. Therefore, effectively overcoming the problem of hypoxia in tumors and avoiding hypoxia that compromises the efficacy of the treatment could improve the anti-tumor therapeutic effect. Thus, this study reports the ability of W18O49@EP nanoparticles to release reactive oxygen species (ROS) during the combined tumor radiotherapy (RT) and photodynamic therapy (PDT). The release of ROS by the nanoparticles during near infrared light (NIR) irradiation was demonstrated by in vitro and in vivo experiments, realizing an effective PDT without inducing hypoxia. Indeed, the ROS did not derive from the oxygen in the tumor microenvironment but they were released by the nanoparticles. Thus, ROS could improve the therapeutic effect of RT avoiding the problem of hypoxia after RT. Hence, W18O49@EP nanoparticles greatly improved the anti-tumor effect due to their effectiveness despite the insufficient oxygen supply and hypoxia caused by traditional RT and PDT.
Collapse
|
11
|
Wu Y, Mealer C, Schutt S, Wilson CL, Bastian D, Sofi MH, Zhang M, Luo Z, Choi HJ, Yang K, Tian L, Nguyen H, Helke K, Schnapp LM, Wang H, Yu XZ. MicroRNA-31 regulates T-cell metabolism via HIF1α and promotes chronic GVHD pathogenesis in mice. Blood Adv 2022; 6:3036-3052. [PMID: 35073581 PMCID: PMC9131913 DOI: 10.1182/bloodadvances.2021005103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that affect cGVHD pathogenesis are required to develop these as potential lifesaving interventions. Using oligonucleotide array, we identified miR-31, which was significantly elevated in allogeneic T cells after HCT in mice. Using genetic and pharmacologic approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and T helper 17 (Th17) cell differentiation but increased generation and function of regulatory T cells (Tregs). MiR-31 facilitated neuropilin-1 downregulation, Foxp3 loss, and interferon-γ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for hypoxia-inducible factor 1α (HIF1α) upregulation in allogeneic T cells. Therefore, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 cell differentiation, and glycolytic metabolism under hypoxia. Upregulation of factor-inhibiting HIF1, a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficient CD8 T cells maintained intact glucose metabolism, cytolytic activity, and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for antileukemia activity. MiR-31 is essential in driving cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Corey Mealer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven Schutt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | | | - David Bastian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - M. Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Mengmeng Zhang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Zhenwu Luo
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Kaipo Yang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Hung Nguyen
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Kris Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | | | - Honglin Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; and
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
12
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Karl F, Hudecek M, Berberich-Siebelt F, Mackensen A, Mougiakakos D. T-Cell Metabolism in Graft Versus Host Disease. Front Immunol 2021; 12:760008. [PMID: 34777373 PMCID: PMC8586445 DOI: 10.3389/fimmu.2021.760008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for numerous hematological malignancies. Elimination of malignant cells depends on the T-cells' Graft-versus-Tumor (GvT) effect. However, Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without compromising GvT activity, are needed. As already explored for autoimmune and inflammatory disorders, immuno-metabolic interventions pose a promising option to address this unmet challenge. Being embedded in a complex regulatory framework, immunological and metabolic pathways are closely intertwined, which is demonstrated by metabolic reprograming of T-cells upon activation or differentiation. In this review, current knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized and approaches to metabolically interfere are outlined. Furthermore, we address the metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more targeted interventions in the future.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Andreas Mackensen
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
14
|
Mhandire K, Saggu K, Buxbaum NP. Immunometabolic Therapeutic Targets of Graft-versus-Host Disease (GvHD). Metabolites 2021; 11:736. [PMID: 34822394 PMCID: PMC8619522 DOI: 10.3390/metabo11110736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option in the treatment of aggressive malignant and non-malignant blood disorders. However, the benefits of allo-HSCT can be compromised by graft-versus-host disease (GvHD), a prevalent and morbid complication of allo-HSCT. GvHD occurs when donor immune cells mount an alloreactive response against host antigens due to histocompatibility differences between the donor and host, which may result in extensive tissue injury. The reprogramming of cellular metabolism is a feature of GvHD that is associated with the differentiation of donor CD4+ cells into the pathogenic Th1 and Th17 subsets along with the dysfunction of the immune-suppressive protective T regulatory cells (Tregs). The activation of glycolysis and glutaminolysis with concomitant changes in fatty acid oxidation metabolism fuel the anabolic activities of the proliferative alloreactive microenvironment characteristic of GvHD. Thus, metabolic therapies such as glycolytic enzyme inhibitors and fatty acid metabolism modulators are a promising therapeutic strategy for GvHD. We comprehensively review the role of cellular metabolism in GvHD pathogenesis, identify candidate therapeutic targets, and describe potential strategies for augmenting immunometabolism to ameliorate GvHD.
Collapse
|
15
|
Echinomycin mitigates ocular angiogenesis by transcriptional inhibition of the hypoxia-inducible factor-1. Exp Eye Res 2021; 206:108518. [PMID: 33639134 DOI: 10.1016/j.exer.2021.108518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Echinomycin (EKN), an inhibitor of hypoxia-inducible factor (HIF)-1 DNA-binding activity, has been implied as a possible therapeutic agent in ischemic diseases. Here, we assess EKN in hypoxia-driven responses in vitro using human primary adult retinal pigment epithelium cells (aRPE) and retinal endothelial cells (hREC), and in vivo using the laser-induced mouse choroidal neovascularization (CNV) model. METHODS Effects of EKN on hypoxia-mediated pathways in aRPE were analyzed by Western blotting for HIF-1α protein, quantitative PCR of HIF-target genes, and proteome array for soluble angiogenic factors. In vitro inhibition of angiogenesis by EKN was determined in hREC. In vivo inhibition of angiogenesis by EKN was determined in the mouse laser-induced CNV, as a model of HIF-associated ocular neovascularization. CNV lesion area was determined by fundus fluorescein angiography. RESULTS aRPE treated with EKN showed hypoxia-dependent significantly decreased cell recovery in the wound healing assay. These results were supported by lower levels of HIF-mediated transcripts detected in hypoxic aRPE cells treated with EKN compared with non-treated controls, and confirmed by proteome profiler for angiogenic factors. hREC exposed to aRPE EKN-conditioned medium displayed reduced sprouting angiogenesis. Mice with laser-induced CNV treated with intravitreally injected EKN showed significantly decreased vascular lesion area when compared with a mouse equivalent of aflibercept, or vehicle-treated controls. CONCLUSIONS Our data proposes EKN as a potent inhibitor of HIF-mediated angiogenesis in retinal cells and in the mouse model of CNV, which could have future implications in the treatment of patients with neovascular age-related macular degeneration.
Collapse
|
16
|
Koike K, Nagano M, Ebihara M, Hirayama T, Tsuji M, Suga H, Nagasawa H. Design, Synthesis, and Conformation-Activity Study of Unnatural Bridged Bicyclic Depsipeptides as Highly Potent Hypoxia Inducible Factor-1 Inhibitors and Antitumor Agents. J Med Chem 2020; 63:4022-4046. [PMID: 32202785 DOI: 10.1021/acs.jmedchem.9b02039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By carrying out structural modifications based on the bicyclic peptide structure of echinomycin, we successfully synthesized various powerful antitumor derivatives. The ring conformation in the obtained compounds was restricted by cross-linking with an unnatural bond. The prepared derivatives were demonstrated to strongly suppress the hypoxia inducible factor (HIF)-1 transcriptional activation and hypoxia induction of HIF-1 protein expression. Particularly, alkene-bridged derivative 12 exhibited remarkably potent cytotoxicity (IC50 = 0.22 nM on the MCF-7 cell line) and HIF-1 inhibition (IC50 = 0.09 nM), which considerably exceeded those of echinomycin. Conformational analyses and molecular modeling studies revealed that the biological activities were enhanced following restriction of the conformation by cross-linking through a metabolically stable and rigid bridge bond. In addition, we proposed a new globular conformation stabilized by intramolecular π stacking that can contribute to the biological effects of bicyclic depsipeptides. The developments presented in the current study serve as a useful guide to expand the chemical space of peptides in drug discovery.
Collapse
Affiliation(s)
- Kota Koike
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Masanobu Nagano
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu-city, Gifu 501-1193, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Hiroaki Suga
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| |
Collapse
|
17
|
Owczarek A, Gieczewska K, Jarzyna R, Jagielski AK, Kiersztan A, Gruza A, Winiarska K. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-dependent activation of phosphoenolpyruvate carboxykinase expression. Biochimie 2020; 171-172:31-37. [DOI: 10.1016/j.biochi.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
|
18
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Flower VA, Barratt SL, Ward S, Pauling JD. The Role of Vascular Endothelial Growth Factor in Systemic Sclerosis. Curr Rheumatol Rev 2019; 15:99-109. [DOI: 10.2174/1573397114666180809121005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022]
Abstract
The pathological hallmarks of Systemic Sclerosis (SSc) constitute an inter-related triad of autoimmunity, vasculopathy and tissue remodeling. Many signaling mediators have been implicated in SSc pathology; most focusing on individual components of this pathogenic triad and current treatment paradigms tend to approach management of such as distinct entities. The present review shall examine the role of Vascular Endothelial Growth Factor (VEGF) in SSc pathogenesis. We shall outline potential mechanisms whereby differential Vascular Endothelial Growth Factor-A (VEGF-A) isoform expression (through conventional and alternative VEGF-A splicing,) may influence the relevant burden of vasculopathy and fibrosis offering novel insight into clinical heterogeneity and disease progression in SSc. Emerging therapeutic approaches targeting VEGF signaling pathways might play an important role in the management of SSc, and differential VEGF-A splice isoform expression may provide a tool for personalized medicine approaches to disease management.
Collapse
Affiliation(s)
- Victoria A. Flower
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Shaney L. Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, BS10 5NB, United Kingdom
| | - Stephen Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - John D. Pauling
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Teng X, Li W, Cornaby C, Morel L. Immune cell metabolism in autoimmunity. Clin Exp Immunol 2019; 197:181-192. [PMID: 30770544 DOI: 10.1111/cei.13277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Immune metabolism is a rapidly moving field. While most of the research has been conducted to define the metabolism of healthy immune cells in the mouse, it is recognized that the overactive immune system that drives autoimmune diseases presents metabolic abnormalities that provide therapeutic opportunities, as well as a means to understand the fundamental mechanisms of autoimmune activation more clearly. Here, we review recent publications that have reported how the major metabolic pathways are affected in autoimmune diseases, with a focus on rheumatic diseases.
Collapse
Affiliation(s)
- X Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - W Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C Cornaby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - L Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Peng Y, Fang Z, Liu M, Wang Z, Li L, Ming S, Lu C, Dong H, Zhang W, Wang Q, Shen R, Xie F, Zhang W, Yang C, Gao X, Sun Y. Testosterone induces renal tubular epithelial cell death through the HIF-1α/BNIP3 pathway. J Transl Med 2019; 17:62. [PMID: 30819186 PMCID: PMC6394048 DOI: 10.1186/s12967-019-1821-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/22/2019] [Indexed: 11/12/2022] Open
Abstract
Background The morbidity of nephrolithiasis is 2–3 times higher in males than in females, suggesting that androgen plays a key role in nephrolithiasis. The death of renal tubular epithelial cells (TECs) is an important pathophysiological process contributing to the development of nephrolithiasis. Therefore, the aim of this study is to investigate whether androgen directly induces TECs apoptosis and necrosis and its underlying mechanisms in kidney stone formation. Materials and methods We compared serum testosterone level between male and female healthy volunteers and kidney stone patients. The in vivo nephrolithiasis model was established using glyoxylic acid, and calcium deposits were detected by van Kossa staining. In the in vitro study using mouse TECs (TCMK-1 cells) and human TECs (HK-2 cells), apoptosis, necrosis, and the expression of BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (BNIP3) were examined incubated with different doses of testosterone using flow cytometry. Levels of apoptosis-related proteins transfected with the BNIP3 siRNA were examined by western blotting. The mitochondrial potential (ΔΨm) was detected by JC-1 staining and flow cytometry. We monitored BNIP3 expression in the testosterone-induced TECs injury model after treatment with hypoxia inducible factor 1α (HIF-1α) and/or hypoxia inducible factor 2α (HIF-2α) inhibitors to determine the upstream protein regulating BNIP3 expression. Additionally, ChIP and luciferase assays were performed to confirm the interaction between HIF-1α and BNIP3. Results Both male and female patients have significantly higher testosterones compared with healthy volunteers. More calcium deposits in the medulla were detected in male mice compared to female and castrated male mice. Testosterone induced TECs apoptosis and necrosis and increased BNIP3 expression in a dose-dependent manner. Testosterone also increased Bax expression, decreased Bcl-2 expression and induced a loss of ΔΨm. This effect was reversed by BNIP3 knockdown. HIF-1α inhibition significantly decreased BNIP3 expression and protected TECs from testosterone-induced apoptosis and necrosis. HIF-2α inhibition, however, did not influence BNIP3 expression or TECs apoptosis or necrosis. Finally, HIF-1α interacted with the BNIP3 promoter region. Conclusion Based on these results, testosterone induced renal TECs death by activating the HIF-1α/BNIP3 pathway. Electronic supplementary material The online version of this article (10.1186/s12967-019-1821-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonghan Peng
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Min Liu
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Zeyu Wang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Ling Li
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Shaoxiong Ming
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chaoyue Lu
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Hao Dong
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wenhui Zhang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Qi Wang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Rong Shen
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Fei Xie
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China. .,Zhangjiang Institute of Fudan University, Shanghai, 201203, China.
| | - Xiaofeng Gao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China.
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
22
|
Hsu TS, Lai MZ. Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 2018; 104:911-918. [PMID: 29901858 DOI: 10.1002/jlb.mr1217-481r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates cellular responses to hypoxia. However, conflicting roles for HIF-1α in the functions of regulatory T cells (Tregs) have been reported. In this review, we summarize observations on the requirement for HIF-1α for FOXP3 expression and Tregs development, as well as for HIF-1α-mediated downregulation of FOXP3 and Tregs destabilization. We also examine the association of HIF-1α with Tregs under pathogenic conditions. Based on these findings, we suggest that HIF-1α mainly plays a detrimental role in the function and stability of Tregs and that HIF-1α is disposable for the development and suppressive function of Tregs.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Park YS, Shin WS, Kim CS, Ahn CM, Qi XF, Kim SK. Molecular and cellular toxicological profiling of DNA bis-intercalator, quinoxaline compounds: echinomycin as the versatile lead. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|