1
|
Marino-Bravante GE, Carey AE, Hüser L, Dixit A, Wang V, Kaur A, Liu Y, Ding S, Schnellmann R, Gerecht S, Gu L, Eisinger-Mathason TSK, Chhabra Y, Weeraratna AT. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. NATURE AGING 2024; 4:350-363. [PMID: 38472454 DOI: 10.1038/s43587-024-00581-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.
Collapse
Affiliation(s)
- Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanpreet Kaur
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Rahel Schnellmann
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Signaling and Microenvironment, FoxChase Cancer Center, Philadelphia, PA, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Dynamic Optical Coherence Tomography: A Non-Invasive Imaging Tool for the Distinction of Nevi and Melanomas. Cancers (Basel) 2022; 15:cancers15010020. [PMID: 36612016 PMCID: PMC9817967 DOI: 10.3390/cancers15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Along with the rising melanoma incidence in recent decades and bad prognoses resulting from late diagnoses, distinguishing between benign and malignant melanocytic lesions has become essential. Unclear cases may require the aid of non-invasive imaging to reduce unnecessary biopsies. This multicentric, case-control study evaluated the potential of dynamic optical coherence tomography (D-OCT) to identify distinguishing microvascular features in nevi. A total of 167 nevi, including dysplastic ones, on 130 participants of all ages and sexes were examined by D-OCT and dermoscopy with a histological reference. Three blinded analyzers evaluated the lesions. Then, we compared the features to those in 159 melanomas of a prior D-OCT study and determined if a differential diagnosis was possible. We identified specific microvascular features in nevi and a differential diagnosis of melanomas and nevi was achieved with excellent predictive values. We conclude that D-OCT overcomes OCT´s inability to distinguish melanocytic lesions based on its focus on microvascularization. To determine if an addition to the gold standard of a clinical-dermoscopic examination improves the diagnosis of unclear lesions, further studies, including a larger sample of dysplastic nevi and artificial intelligence, should be conducted.
Collapse
|
3
|
Mancipe JMA, Lobianco FA, Dias ML, da Silva Moreira Thiré RM. Electrospinning: New Strategies for the Treatment of Skin Melanoma. Mini Rev Med Chem 2022; 22:564-578. [PMID: 34254914 DOI: 10.2174/1389557521666210712111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have shown a significant growth of skin cancer cases in northern regions of the world, in which its presence was not common. Skin cancer is one of the cancers that mostly affects the world's population, ranking fifth in studies conducted in the United States (USA). Melanoma is cancer that has the highest number of deaths worldwide since it is the most resistant skin cancer to current treatments. This is why alternatives for its treatment has been investigated considering nanomedicine concepts. This study approaches the role of this field in the creation of promising electrospun devices, composed of nanoparticles and nanofibers, among other structures, capable of directing and/or loading active drugs and/or materials with the objective of inhibiting the growth of melanoma cells or even eliminating those cells.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | - Franz Acker Lobianco
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
| | - Marcos Lopes Dias
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | | |
Collapse
|
4
|
Chhabra G, Singh CK, Guzmán-Pérez G, Ndiaye MA, Iczkowski KA, Ahmad N. Anti-melanoma effects of concomitant inhibition of SIRT1 and SIRT3 in Braf V600E/Pten NULL mice. J Invest Dermatol 2021; 142:1145-1157.e7. [PMID: 34597611 PMCID: PMC9199498 DOI: 10.1016/j.jid.2021.08.434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small molecule dual inhibitor of SIRT1 and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of 10-week-old mice, and the effects of 4'-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 4'-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M. Syndecan-1 Promotes Angiogenesis in Triple-Negative Breast Cancer through the Prognostically Relevant Tissue Factor Pathway and Additional Angiogenic Routes. Cancers (Basel) 2021; 13:cancers13102318. [PMID: 34066023 PMCID: PMC8150756 DOI: 10.3390/cancers13102318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by tumor angiogenesis and poor patient survival. Here, we analyzed the function of the cell surface molecule Syndecan-1 in tumor angiogenesis in a 3D cell culture system. As a novel finding, we demonstrate that downregulation of Syndecan-1 reduces angiogenesis by decreasing the amount of angiogenesis factors of the tissue factor pathway. Furthermore, we show that the components of this pathway are associated with the prognosis of breast cancer patients. Our study identifies Syndecan-1 and the tissue factor pathway as novel potential therapeutic targets in the aggressive triple-negative subtype of breast cancer, for which no targeted therapies are currently available. Abstract Triple-negative breast cancer (TNBC) is characterized by increased angiogenesis, metastasis, and poor survival. Dysregulation of the cell surface heparan sulfate proteoglycan and signaling co-receptor Syndecan-1 is linked to poor prognosis. To study its role in angiogenesis, we silenced Syndecan-1 in TNBC cell lines using a 3D human umbilical vein endothelial cell (HUVEC) co-culture system. Syndecan-1 siRNA depletion in SUM-149, MDA-MB-468, and MDA-MB-231 cells decreased HUVEC tubule network formation. Angiogenesis array revealed reduced VEGF-A and tissue factor (TF) in the Syndecan-1-silenced secretome. qPCR independently confirmed altered expression of F3, F7, F2R/PAR1, F2RL1/PAR2, VEGF-A, EDN1, IGFBP1, and IGFBP2 in SUM-149, MDA-MB-231, and MDA-MB-468 cells. ELISA revealed reduced secreted endothelin-1 (SUM-149, MDA-MB-468) and TF (all cell lines) upon Syndecan-1 depletion, while TF pathway inhibitor treatment impaired angiogenesis. Survival analysis of 3951 patients demonstrated that high expression of F3 and F7 are associated with better relapse-free survival, whereas poor survival was observed in TNBC and p53 mutant basal breast cancer (F3) and in ER-negative and HER2-positive breast cancer (F2R, F2RL1). STRING protein network analysis revealed associations of Syndecan-1 with VEGF-A and IGFBP1, further associated with the TF and ET-1 pathways. Our study suggests that TNBC Syndecan-1 regulates angiogenesis via the TF and additional angiogenic pathways and marks its constituents as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Eslam A. El-Ghonaimy
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Theresa V. Rottke
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
- Correspondence: (S.A.I.); (M.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Correspondence: (S.A.I.); (M.G.)
| |
Collapse
|
6
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
7
|
Welzel J, Schuh S, De Carvalho N, Themstrup L, Ulrich M, Jemec GBE, Holmes J, Pellacani G. Dynamic optical coherence tomography shows characteristic alterations of blood vessels in malignant melanoma. J Eur Acad Dermatol Venereol 2021; 35:1087-1093. [PMID: 33300200 DOI: 10.1111/jdv.17080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dynamic optical coherence tomography (D-OCT) allows in vivo visualization of blood vessels in the skin and in malignant tumours. Vessel patterns in malignant melanoma may be associated with tumour stage. OBJECTIVE The aim of this study was to describe blood vessel patterns in melanomas and to correlate them with stage. METHODS One hundred fifty-nine malignant melanomas were assessed in a multicentre study. Every tumour was imaged using D-OCT prior to surgery and histologic evaluation. The tumour data such as thickness and ulceration as well as the staging at primary diagnosis and a follow-up of at least 40 months resulted in a stage classification. The vessel patterns were assessed according to predefined categories, compared with healthy adjacent skin, and correlated to stage. RESULTS Melanomas contained more blood vessels in different patterns compared with healthy adjacent skin. In particular, irregular vascular shapes such as blobs, coils, curves and serpiginous vessels were more common in melanomas. In addition, these patterns were significantly more often found in high-risk and metastatic melanomas than in low-risk lesions. CONCLUSION In melanomas, the density of the blood vessels is increased, and irregular vascular patterns are more frequent. At higher stages, especially in metastatic melanomas, these atypical vessels are significantly more common.
Collapse
Affiliation(s)
- J Welzel
- Department of Dermatology, University Hospital Augsburg, Augsburg, Germany
| | - S Schuh
- Department of Dermatology, University Hospital Augsburg, Augsburg, Germany
| | - N De Carvalho
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - L Themstrup
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark.,Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark
| | - M Ulrich
- CMB Collegium Medicum Berlin, Berlin, Germany
| | - G B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark.,Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark
| | - J Holmes
- Michelson Diagnostics, Maidstone, UK
| | - G Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
High expression of Tie-2 predicts poor prognosis in primary high grade serous ovarian cancer. PLoS One 2020; 15:e0241484. [PMID: 33151982 PMCID: PMC7644024 DOI: 10.1371/journal.pone.0241484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Antiangiogenic therapy, although part of standard treatment in ovarian cancer, has variable efficacy. Furthermore, little is known about the prognostic biomarkers and factors influencing angiogenesis in cancer tissue. We evaluated the expression of angiopoietin-2 and two endothelial tyrosine kinase receptors, Tie-1 and Tie-2, and assessed their value in the prediction of survival in patients with malignant epithelial ovarian cancer. We also compared the expression of these factors between primary high grade serous tumors and their distant metastasis. Materials and methods We evaluated 86 women with primary epithelial ovarian cancer. Matched distal omental metastasis were investigated in 18.6% cases (N = 16). The expression levels of angiogenic factors were evaluated by immunohistochemistry in 306 specimens and by qRT-PCR in 111 samples. Results A high epithelial expression level of Tie-2 is a significant prognostic factor in primary high grade serous ovarian cancer. It predicted significantly shorter overall survival both in univariate (p<0.001) and multivariate survival analyses (p = 0.022). Low angiopoietin-2 expression levels in primary ovarian tumors were significantly associated with shorter overall survival (p = 0.015) in the univariate survival analysis. A low expression of angiopoietin-2 was also significantly related to high grade tumors, size of residual tumor after primary surgery and the recurrence of cancer (p = 0.008; p = 0.012; p = 0.018) in the whole study population. The expression of angiopoietin-2 and Tie-2 was stronger in distal omental metastasis than in primary high grade serous tumors in matched-pair analysis (p = 0.001; p = 0.002). Conclusions The angiogenic factor, angiopoietin-2, and its receptor Tie-2 seem to be significant prognostic factors in primary epithelial ovarian cancer. Their expression levels are also increased in metastatic lesions in comparison with primary tumors.
Collapse
|
9
|
Relationship between neuropilin-1 expression and prognosis, according to gastric cancer histology. J Mol Histol 2020; 51:199-208. [PMID: 32242307 DOI: 10.1007/s10735-020-09870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Neuropilin-1 (NRP-1) is known to be related to various types of cancer and is considered a novel tumor marker or therapeutic target. The aim of this study was to identify the clinical implications of NRP-1 expression in terms of prognosis in patients with gastric cancer. A total of 265 patients who underwent radical gastrectomy for the treatment of gastric cancer from 2008 to 2011 were included in this retrospective study. NRP-1 expression of tumors was determined by immunohistochemistry. The patients' clinicopathological characteristics, operative details, and long-term outcomes were retrospectively analyzed. A total of 181 (68.3%) patients demonstrated expression of NRP-1. No survival difference was observed according to NRP-1 expression in any patient. The patients were divided into the gland formation (GF) and the no gland formation (nGF) types, according to histology. NRP-1 expression rates were 65.6% (84/128) and 70.8% (97/137), respectively. NRP-1 expression was not an independent prognostic factor in the GF group, although patients who expressed NRP-1 had better survival outcomes. In contrast, patients who expressed NRP-1 in the nGF group had worse 5-year survival rates (p = 0.027), and NRP-1 was an independent prognostic factor in a multivariate analysis (hazard ratio, 1.923; 95% confidence interval, 1.041-3.551). NRP-1 expression in patients with nGF type gastric cancer is predictive of a poor prognosis.
Collapse
|
10
|
Simonsen TG, Gaustad JV, Rofstad EK. Bevacizumab treatment of meningeal melanoma metastases. J Transl Med 2020; 18:13. [PMID: 31915016 PMCID: PMC6947957 DOI: 10.1186/s12967-020-02212-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background Melanoma patients with metastatic growth in the meninges have poor prognosis and few treatment options. Although treatment with BRAF inhibitors or immune checkpoint inhibitors has provided promising results, most patients with advanced melanoma are resistant to these treatments and develop severe side effects. Novel treatment strategies are needed for patients with meningeal melanoma metastases, and the potential of antiangiogenic therapy was investigated in this preclinical study. Methods Two GFP-transfected melanoma models (A-07 and D-12) differing substantially in VEGF-A expression were included in the study, and the anti-VEGF-A antibody bevacizumab was used as therapeutic agent. Meningeal metastases were initiated in BALB/c nu/nu mice by intracranial inoculation of melanoma cells, and bevacizumab treatment was given twice a week in i.p. doses of 10 mg/kg until the mice became moribund. Therapeutic effects were evaluated by determining tumor host survival time, assessing tumor growth and angiogenic activity by quantitative analyses of histological preparations, and measuring the expression of angiogenesis-related genes by quantitative PCR. Results Meningeal A-07 melanomas showed higher expression of VEGF-A than meningeal D-12 melanomas, whereas the expression of ANGPT2 and IL8, two important angiogenesis drivers in melanoma, was much higher in D-12 than in A-07 tumors. Bevacizumab treatment inhibited tumor angiogenesis and prolonged host survival in mice with A-07 tumors but not in mice with D-12 tumors. Meningeal A-07 tumors in bevacizumab-treated mice compensated for the reduced VEGF-A activity by up-regulating a large number of angiogenesis-related genes, including ANGPT2 and its receptors TIE1 and TIE2. Melanoma cells migrated from meningeal tumors into the cerebrum, where they initiated metastatic growth by vessel co-option. In the A-07 model, the density of cerebral micrometastases was higher in bevacizumab-treated than in untreated mice, either because bevacizumab treatment increased mouse survival or induced increased tumor gene expression. Conclusions The development of antiangiogenic strategies for the treatment of meningeal melanoma metastases is a challenging task because the outcome of treatment will depend on the angiogenic signature of the tumor tissue, treatment-induced alterations of the angiogenic signature, and the treatment sensitivity of metastatic lesions in other intracranial sites.
Collapse
Affiliation(s)
- Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Xu M, Wang X, Pan Y, Zhao X, Yan B, Ruan C, Xia L, Zhao Y. Blocking podoplanin suppresses growth and pulmonary metastasis of human malignant melanoma. BMC Cancer 2019; 19:599. [PMID: 31208371 PMCID: PMC6580467 DOI: 10.1186/s12885-019-5808-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Background Podoplanin (PDPN), a transmembrane O-glycoprotein, is up-regulated in many tumors and is involved in tumor metastasis and malignant progression. In previous studies, we generated a functional blocking monoclonal antibody (mAb, SZ168) against the extracellular domain of human PDPN. This study is aimed to investigate whether blocking PDPN by SZ168 inhibits tumor growth and metastasis. Methods Malignant melanoma xenograft model by inoculating subcutaneously human malignant melanoma cell line C8161 into the back of BALB/c nude mice was used. Endogenous PDPN expression in C8161 cells and nasopharyngeal cancer cell line CNE-2 was detected using western blot and flow cytometry. Results SZ168 significantly inhibited C8161 or CNE-2 cell-induced platelet aggregation in a dose-dependent manner with a maximal inhibition of 73.9 ± 3.0% in C8161 cells or 77.1 ± 2.7% in CNE-2 cells. Moreover, SZ168 inhibited the growth and pulmonary metastasis of C8161cells in vivo. The number of lung metastatic foci in the SZ168-treated group was significantly decreased compared with that in the control mouse IgG group (1.61 ± 0.44 vs.3.83 ± 0.60, P < 0.01). Subcutaneous tumor volume, weight, and incidence were also significantly reduced in the SZ168-treated group compared to the control group (P < 0.05). Additionally, SZ168 recognized PDPN in immunohistochemical analyses of tumor tissue sections. Conclusions SZ168 blocks growth and pulmonary metastasis of human malignant melanoma by inhibiting the interaction between tumor PDPN and platelet CLEC-2 and therefore is a promising antibody for therapeutic development against malignant melanoma.
Collapse
Affiliation(s)
- Mengqiao Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xia Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, Jiangsu, China
| | | | - Xingpeng Zhao
- Clinical Laboratory Center, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, Henan, China
| | - Bin Yan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, Jiangsu, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
12
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
13
|
Cutaneous Melanoma-A Long Road from Experimental Models to Clinical Outcome: A Review. Int J Mol Sci 2018; 19:ijms19061566. [PMID: 29795011 PMCID: PMC6032347 DOI: 10.3390/ijms19061566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis.
Collapse
|
14
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|