1
|
Liu Z, Wu Y, Xu H, Wang M, Weng S, Pei D, Chen S, Wang W, Yan J, Cui L, Duan J, Zhao Y, Wang Z, Ma Z, Li R, Duan W, Qiu Y, Su D, Li S, Liu H, Li W, Ma C, Yu M, Yu Y, Chen T, Fu J, Zhen Y, Yu B, Ji Y, Zheng H, Liang D, Liu X, Yan D, Han X, Wang F, Li ZC, Zhang Z. Multimodal fusion of radio-pathology and proteogenomics identify integrated glioma subtypes with prognostic and therapeutic opportunities. Nat Commun 2025; 16:3510. [PMID: 40222975 PMCID: PMC11994800 DOI: 10.1038/s41467-025-58675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Integrating multimodal data can uncover causal features hidden in single-modality analyses, offering a comprehensive understanding of disease complexity. This study introduces a multimodal fusion subtyping (MOFS) framework that integrates radiological, pathological, genomic, transcriptomic, and proteomic data from 122 patients with IDH-wildtype adult glioma, identifying three subtypes: MOFS1 (proneural) with favorable prognosis, elevated neurodevelopmental activity, and abundant neurocyte infiltration; MOFS2 (proliferative) with the worst prognosis, superior proliferative activity, and genome instability; MOFS3 (TME-rich) with intermediate prognosis, abundant immune and stromal components, and sensitive to anti-PD-1 immunotherapy. STRAP emerges as a prognostic biomarker and potential therapeutic target for MOFS2, associated with its proliferative phenotype. Stromal infiltration in MOFS3 serves as a crucial prognostic indicator, allowing for further prognostic stratification. Additionally, we develop a deep neural network (DNN) classifier based on radiological features to further enhance the clinical translatability, providing a non-invasive tool for predicting MOFS subtypes. Overall, these findings highlight the potential of multimodal fusion in improving the classification, prognostic accuracy, and precision therapy of IDH-wildtype glioma, offering an avenue for personalized management.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Yushuai Wu
- Shanghai Academy of Artificial Intelligence for Science, Shanghai, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - WeiWei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dingyuan Su
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caoyuan Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinhui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Te Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Fu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - YingWei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Fubing Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Stojchevski R, Sutanto EA, Sutanto R, Hadzi-Petrushev N, Mladenov M, Singh SR, Sinha JK, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Bhaskar R, Avtanski D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers (Basel) 2025; 17:1008. [PMID: 40149342 PMCID: PMC11940485 DOI: 10.3390/cancers17061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes-tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival-can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Edward Agus Sutanto
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA;
| | - Rinni Sutanto
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY 11545, USA;
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Sajal Raj Singh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, Maharashtra, India;
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, Haryana, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Wang X, Shen G, Yang Y, Jiang C, Ruan T, Yang X, Zhuo L, Zhang Y, Ou Y, Zhao X, Long S, Tang X, Lin T, Shen Y. DNAH3 deficiency causes flagellar inner dynein arm loss and male infertility in humans and mice. eLife 2024; 13:RP96755. [PMID: 39503742 PMCID: PMC11540302 DOI: 10.7554/elife.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Axonemal protein complexes, including the outer and inner dynein arms (ODA/IDA), are highly ordered structures of the sperm flagella that drive sperm motility. Deficiencies in several axonemal proteins have been associated with male infertility, which is characterized by asthenozoospermia or asthenoteratozoospermia. Dynein axonemal heavy chain 3 (DNAH3) resides in the IDA and is highly expressed in the testis. However, the relationship between DNAH3 and male infertility is still unclear. Herein, we identified biallelic variants of DNAH3 in four unrelated Han Chinese infertile men with asthenoteratozoospermia through whole-exome sequencing (WES). These variants contributed to deficient DNAH3 expression in the patients' sperm flagella. Importantly, the patients represented the anomalous sperm flagellar morphology, and the flagellar ultrastructure was severely disrupted. Intriguingly, Dnah3 knockout (KO) male mice were also infertile, especially showing the severe reduction in sperm movement with the abnormal IDA and mitochondrion structure. Mechanically, nonfunctional DNAH3 expression resulted in decreased expression of IDA-associated proteins in the spermatozoa flagella of patients and KO mice, including DNAH1, DNAH6, and DNALI1, the deletion of which has been involved in disruption of sperm motility. Moreover, the infertility of patients with DNAH3 variants and Dnah3 KO mice could be rescued by intracytoplasmic sperm injection (ICSI) treatment. Our findings indicated that DNAH3 is a novel pathogenic gene for asthenoteratozoospermia and may further contribute to the diagnosis, genetic counseling, and prognosis of male infertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xue Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Liangchai Zhuo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yingteng Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yangdi Ou
- West China School of Medicine, Sichuan UniversityChengduChina
| | - Xinya Zhao
- West China School of Basic Medicine and Forensic Medicine, Sichuan UniversityChengduChina
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Ganatra H, Tan JK, Simmons A, Bigogno CM, Khurana V, Ghose A, Ghosh A, Mahajan I, Boussios S, Maniam A, Ayodele O. Applying whole-genome and whole-exome sequencing in breast cancer: a review of the landscape. Breast Cancer 2024; 31:999-1009. [PMID: 39190283 PMCID: PMC11489287 DOI: 10.1007/s12282-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are crucial within the context of breast cancer (BC) research. They play a role in the detection of predisposed genes, risk stratification, and identification of rare single nucleotide polymorphisms (SNPs). These technologies aid in the discovery of associations between various syndromes and BC, understanding the tumour microenvironment (TME), and even identifying unknown mutations that could be useful in future for personalised treatments. Genetic analysis can find the associated risk of BC and can be used in early screening, diagnosis, specific treatment plans, and prevention in patients who are at high risk of tumour formation. This article focuses on the application of WES and WGS, and how uncovering novel candidate genes associated with BC can aid in treating and preventing BC.
Collapse
Affiliation(s)
- Hetvi Ganatra
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, UK
| | - Joecelyn Kirani Tan
- School of Medicine, University of St. Andrews, Fife, Scotland, UK
- Andrews Oncology Society, Scotland, UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), London, UK
| | - Vatsala Khurana
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK
| | - Adheesh Ghosh
- UCL Cancer Institute, University College London, London, UK
| | - Ishika Mahajan
- Department of Oncology, Lincoln Oncology Centre, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK.
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK.
- AELIA Organization, 9th Km Thessaloniki-hermi, 57001, Thessaloniki, Greece.
| | - Akash Maniam
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Caribbean Cancer Research Institute, Port of Spain, Trinidad and Tobago
| | - Olubukola Ayodele
- Department of Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Meng GQ, Wang Y, Luo C, Tan YM, Li Y, Tan C, Tu C, Zhang QJ, Hu L, Zhang H, Meng LL, Liu CY, Deng L, Lu GX, Lin G, Du J, Tan YQ, Sha Y, Wang L, He WB. Bi-allelic variants in DNAH3 cause male infertility with asthenoteratozoospermia in humans and mice. Hum Reprod Open 2024; 2024:hoae003. [PMID: 38312775 PMCID: PMC10834362 DOI: 10.1093/hropen/hoae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
STUDY QUESTION Are there other pathogenic genes for asthenoteratozoospermia (AT)? SUMMARY ANSWER DNAH3 is a novel candidate gene for AT in humans and mice. WHAT IS KNOWN ALREADY AT is a major cause of male infertility. Several genes underlying AT have been reported; however, the genetic aetiology remains unknown in a majority of affected men. STUDY DESIGN SIZE DURATION A total of 432 patients with AT were recruited in this study. DNAH3 mutations were identified by whole-exome sequencing (WES). Dnah3 knockout mice were generated using the genome editing tool. The morphology and motility of sperm from Dnah3 knockout mice were investigated. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS WES was performed on 432 infertile patients with AT. In addition, two lines of Dnah3 knockout mice were generated. Haematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunostaining, and computer-aided sperm analysis (CASA) were performed to investigate the morphology and motility of the spermatozoa. ICSI was used to overcome the infertility of one patient and of the Dnah3 knockout mice. MAIN RESULTS AND THE ROLE OF CHANCE DNAH3 biallelic variants were identified in three patients from three unrelated families. H&E staining revealed various morphological abnormalities in the flagella of sperm from the patients, and TEM and immunostaining further showed the loss of the central pair of microtubules, a dislocated mitochondrial sheath and fibrous sheath, as well as a partial absence of the inner dynein arms. In addition, the two Dnah3 knockout mouse lines demonstrated AT. One patient and the Dnah3 knockout mice showed good treatment outcomes after ICSI. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This is a preliminary report suggesting that defects in DNAH3 can lead to asthenoteratozoospermia in humans and mice. The pathogenic mechanism needs to be further examined in a future study. WIDER IMPLICATIONS OF THE FINDINGS Our findings show that DNAH3 is a novel candidate gene for AT in humans and mice and provide crucial insights into the biological underpinnings of this disorder. The findings may also be beneficial for counselling affected individuals. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from National Natural Science Foundation of China (82201773, 82101961, 82171608, 32322017, 82071697, and 81971447), National Key Research and Development Program of China (2022YFC2702604), Scientific Research Foundation of the Health Committee of Hunan Province (B202301039323, B202301039518), Hunan Provincial Natural Science Foundation (2023JJ30716), the Medical Innovation Project of Fujian Province (2020-CXB-051), the Science and Technology Project of Fujian Province (2023D017), China Postdoctoral Science Foundation (2022M711119), and Guilin technology project for people's benefit (20180106-4-7). The authors declare no competing interests.
Collapse
Affiliation(s)
- Gui-Quan Meng
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Chen Luo
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yu-Mei Tan
- GuangDong Provincial Fertility Hospital (GuangDong Provincial Reproductive Science Institute), Guangzhou, China
| | - Yong Li
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chen Tan
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chaofeng Tu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Qian-Jun Zhang
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Huan Zhang
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Lan-Lan Meng
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chun-Yu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Leiyu Deng
- Reproductive Center of No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Guang-Xiu Lu
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Ge Lin
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Juan Du
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen-Bin He
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
6
|
Ren D, Li L, Wang S, Zuo Y. The c-MYC transcription factor conduces to resistance to cisplatin by regulating MMS19 in bladder cancer cells. Tissue Cell 2023; 82:102096. [PMID: 37201439 DOI: 10.1016/j.tice.2023.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Chemoresistance is one of the dominant causes for tumor progression and recurrence of bladder cancer (BC). This paper investigated the effects of transcription factor c-MYC through promoting MMS19 expression on proliferation, metastasis and cisplatin (DDP) resistance in BC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were applied to acquire the needed BC gene data. The mRNA and protein levels of c-MYC and MMS19 were verified with q-PCR or Western blot assay. MTT and Transwell assays were utilized to detect cell viability and metastasis. Chromatin Immunoprecipitation (ChIP) assay and Luciferase reporter assay were exerted to confirm the relationship between c-MYC and MMS19. TCGA and GEO BC datasets results implied MMS19 could be an independent indicator for BC patients' prognosis. MMS19 expression was dramatically augmented in BC cell lines. Overexpression of MMS19 conduced to accelerate BC cells proliferation, metastasis and increase DDP resistance. c-MYC was positively correlated with MMS19 and acted as a transcription activator for MMS19 in BC cell lines and activated MMS19 expression. Overexpression of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance. In conclusions, c-MYC gene was a transcriptional regulator of MMS19. Up-regulation of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance by motivating MMS19 expression. This molecular mechanism between c-MYC and MMS19 exerts a crucial mission in BC tumorigenesis and DDP resistance, and may contribute to the diagnosis and therapy of BC for the time to come.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Shuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
7
|
BenAyed-Guerfali D, Kifagi C, BenKridis-Rejeb W, Ammous-Boukhris N, Ayedi W, Khanfir A, Daoud J, Mokdad-Gargouri R. The Identification by Exome Sequencing of Candidate Genes in BRCA-Negative Tunisian Patients at a High Risk of Hereditary Breast/Ovarian Cancer. Genes (Basel) 2022; 13:genes13081296. [PMID: 35893033 PMCID: PMC9331434 DOI: 10.3390/genes13081296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Germline variants in BRCA1/BRCA2 genes explain about 20% of hereditary breast/ovarian cancer (HBOC) cases. In the present paper, we aim to identify genetic determinants in BRCA-negative families from the South of Tunisia. (2) Methods: Exome Sequencing (ES) was performed on the lymphocyte DNA of patients negative for BRCA mutations from each Tunisian family with a high risk of HBOC. (3) Results: We focus on the canonical genes associated with HBOC and identified missense variants in DNA damage response genes, such as ATM, RAD52, and RAD54; however, no variants in PALB2, Chek2, and TP53 genes were found. To identify novel candidate genes, we selected variants harboring a loss of function and identified 17 stop-gain and 11 frameshift variants in genes not commonly known to be predisposed to HBOC. Then, we focus on rare and high-impact genes shared by at least 3 unrelated patients from each family and selected 16 gene variants. Through combined data analysis from MCODE with gene ontology and KEGG pathways, a short list of eight candidate genes (ATM, EP300, LAMA1, LAMC2, TNNI3, MYLK, COL11A2, and LAMB3) was created. The impact of the 24 selected genes on survival was analyzed using the TCGA data resulting in a selection of five candidate genes (EP300, KMT2C, RHPN2, HSPG2, and CCR3) that showed a significant association with survival. (4) Conclusions: We identify novel candidate genes predisposed to HBOC that need to be validated in larger cohorts and investigated by analyzing the co-segregation of selected variants in affected families and the locus-specific loss of heterozygosity to highlight their relevance for HBOC risk.
Collapse
Affiliation(s)
- Dorra BenAyed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, Sfax 3038, Tunisia; (D.B.-G.); (C.K.); (N.A.-B.); (W.A.)
| | - Chamseddine Kifagi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, Sfax 3038, Tunisia; (D.B.-G.); (C.K.); (N.A.-B.); (W.A.)
| | - Wala BenKridis-Rejeb
- Department of Medical Oncology, Habib Bourguiba Hospital, Sfax 3002, Tunisia; (W.B.-R.); (A.K.)
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, Sfax 3038, Tunisia; (D.B.-G.); (C.K.); (N.A.-B.); (W.A.)
| | - Wajdi Ayedi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, Sfax 3038, Tunisia; (D.B.-G.); (C.K.); (N.A.-B.); (W.A.)
| | - Afef Khanfir
- Department of Medical Oncology, Habib Bourguiba Hospital, Sfax 3002, Tunisia; (W.B.-R.); (A.K.)
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, Sfax 3002, Tunisia;
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, Sfax 3038, Tunisia; (D.B.-G.); (C.K.); (N.A.-B.); (W.A.)
- Correspondence: ; Tel./Fax: +216-748-744-49
| |
Collapse
|
8
|
Walker K, Kalra D, Lowdon R, Chen G, Molik D, Soto DC, Dabbaghie F, Khleifat AA, Mahmoud M, Paulin LF, Raza MS, Pfeifer SP, Agustinho DP, Aliyev E, Avdeyev P, Barrozo ER, Behera S, Billingsley K, Chong LC, Choubey D, De Coster W, Fu Y, Gener AR, Hefferon T, Henke DM, Höps W, Illarionova A, Jochum MD, Jose M, Kesharwani RK, Kolora SRR, Kubica J, Lakra P, Lattimer D, Liew CS, Lo BW, Lo C, Lötter A, Majidian S, Mendem SK, Mondal R, Ohmiya H, Parvin N, Peralta C, Poon CL, Prabhakaran R, Saitou M, Sammi A, Sanio P, Sapoval N, Syed N, Treangen T, Wang G, Xu T, Yang J, Zhang S, Zhou W, Sedlazeck FJ, Busby B. The third international hackathon for applying insights into large-scale genomic composition to use cases in a wide range of organisms. F1000Res 2022; 11:530. [PMID: 36262335 PMCID: PMC9557141 DOI: 10.12688/f1000research.110194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.
Collapse
Affiliation(s)
- Kimberly Walker
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Guangyi Chen
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - David Molik
- Tropical Crop and Commodity Protection Research Unit, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Daniela C. Soto
- Biochemistry & Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Fawaz Dabbaghie
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Institute for Medical Biometry and Bioinformatics, University hospital Düsseldorf, Düsseldorf, Germany
| | - Ahmad Al Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Elbay Aliyev
- Research Department, Sidra Medicine, Doha, Qatar
| | - Pavel Avdeyev
- Computational Biology Institute, The George Washington University, Washington, DC, 20052, USA
| | - Enrico R. Barrozo
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| | - Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Alejandro R. Gener
- Association of Public Health Labs, Centers for Disease Control and Prevention, Downey, CA, USA
| | - Timothy Hefferon
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Morgan Henke
- Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wolfram Höps
- EMBL Heidelberg, Genome Biology Unit, Heidelberg, Germany
| | | | - Michael D. Jochum
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Jose
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Rupesh K. Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | - Priya Lakra
- Department of Zoology, University of Delhi, Delhi, India
| | - Damaris Lattimer
- University of Applied Sciences Upper Austria - FH Hagenberg, Mühlkreis, Austria
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bai-Wei Lo
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chunhsuan Lo
- Human Genetics Laboratory, National Institute of Genetics, Japan, Mishima City, Japan
| | - Anneri Lötter
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Rajarshi Mondal
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | - Hiroko Ohmiya
- Genetic Reagent Development Unit, Medical & Biological Laboratories Co., Ltd., Tokoyo, Japan
| | - Nasrin Parvin
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | | | | | | | - Marie Saitou
- Center of Integrative Genetics (CIGENE),Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Aditi Sammi
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Philippe Sanio
- University of Applied Sciences Upper Austria - FH Hagenberg, Hagenberg im Mühlkreis, Austria
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Najeeb Syed
- Research Department, Sidra Medicine, Doha, Qatar
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Tiancheng Xu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Jianzhi Yang
- Department of Quantitative and Computational Biology,, University of Southern California, Los Angeles, CA, USA
| | - Shangzhe Zhang
- School of Biology, University of St Andrews, St Andrews, UK
| | - Weiyu Zhou
- Department of Statistical Science, George Mason University, Fairfax, Virginia, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|
9
|
Shah PP, Saurabh K, Kurlawala Z, Vega AA, Siskind LJ, Beverly LJ. Towards a molecular understanding of the overlapping and distinct roles of UBQLN1 and UBQLN2 in lung cancer progression and metastasis. Neoplasia 2022; 25:1-8. [PMID: 35063704 PMCID: PMC8864381 DOI: 10.1016/j.neo.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL). Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. Molecular, biochemical and RNAseq analyses in multiple cellular systems, identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. The present study, provide evidence that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL) that all contain ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains. UBQLN1 and UBQLN2 are the most closely related and have been the most well-studied, however their biochemical, biological and cellular functions are still not well understood. Previous studies from our lab reported that loss of UBQLN1 or UBQLN2 induces epithelial mesenchymal transition (EMT) in lung adenocarcinoma cells. Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. In fact, following simultaneous loss of both UBQLN1 and UBQLN2 many of these processes were further enhanced. To understand the molecular mechanisms by which UBQLN1 and UBQLN2 loss could be additive, we performed molecular, biochemical and RNAseq analyses in multiple cellular systems. We identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. We have also begun to define cell type specific gene regulation of UBQLN1 and UBQLN2, as well as understand how loss of either gene can alter differentiation of normal cells. The data presented here demonstrate that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
Collapse
Affiliation(s)
- Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Kumar Saurabh
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Zimple Kurlawala
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Leah J Siskind
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
10
|
Ben Aissa-Haj J, Kabbage M, Othmen H, Saulnier P, Kettiti HT, Jaballah-Gabteni A, Ferah A, Medhioub M, Khsiba A, Mahmoudi M, Maaloul A, Ben Nasr S, Chelbi E, Abdelhak S, Boubaker MS, Azzouz MM, Rouleau E. CDH1 Germline Variants in a Tunisian Cohort with Hereditary Diffuse Gastric Carcinoma. Genes (Basel) 2022; 13:genes13030400. [PMID: 35327954 PMCID: PMC8950196 DOI: 10.3390/genes13030400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutational screening of the CDH1 gene is a standard treatment for patients who fulfill Hereditary Diffuse Gastric Cancer (HDGC) testing criteria. In this framework, the classification of variants found in this gene is a crucial step for the clinical management of patients at high risk for HDGC. The aim of our study was to identify CDH1 as well as CTNNA1 mutational profiles predisposing to HDGC in Tunisia. Thirty-four cases were included for this purpose. We performed Sanger sequencing for the entire coding region of both genes and MLPA (Multiplex Ligation Probe Amplification) assays to investigate large rearrangements of the CDH1 gene. As a result, three cases, all with the HDGC inclusion criteria (8.82% of the entire cohort), carried pathogenic and likely pathogenic variants of the CDH1 gene. These variants involve a novel splicing alteration, a missense c.2281G > A detected by Sanger sequencing, and a large rearrangement detected by MLPA. No pathogenic CTNNA1 variants were found. The large rearrangement is clearly pathogenic, implicating a large deletion of two exons. The novel splicing variant creates a cryptic site. The missense variant is a VUS (Variant with Uncertain Significance). With ACMG (American College of Medical Genetics and Genomics) classification and the evidence available, we thus suggest a revision of its status to likely pathogenic. Further functional studies or cosegregation analysis should be performed to confirm its pathogenicity. In addition, molecular exploration will be needed to understand the etiology of the other CDH1- and CTNNA1-negative cases fulfilling the HDGC inclusion criteria.
Collapse
Affiliation(s)
- Jihenne Ben Aissa-Haj
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
- Correspondence:
| | - Maria Kabbage
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Houcemeddine Othmen
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Patrick Saulnier
- Genomic Platform Molecular Biopathology Unit, URA3655 Inserm, US23 CNRS, Gustave Roussy, 94805 Villejuif, France;
| | - Haifa Tounsi Kettiti
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Amira Jaballah-Gabteni
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Azer Ferah
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Mouna Medhioub
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Amal Khsiba
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Moufida Mahmoudi
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Afifa Maaloul
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
| | - Sonia Ben Nasr
- Oncology Department, Military Hospital of Tunis, Tunis 1008, Tunisia;
| | - Emna Chelbi
- Department of Pathology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia;
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - M. Samir Boubaker
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Mohamed Mousaddak Azzouz
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Etienne Rouleau
- Department of Biology and Pathology-Cancer Genetics Laboratory-Gustave Roussy, 94805 Villejuif, France;
| |
Collapse
|
11
|
Said MB, Ayed IB, Elloumi I, Hasnaoui M, Souissi A, Idriss N, Aloulou H, Chabchoub I, Maâlej B, Driss D, Masmoudi S. Custom Next-Generation Sequencing Identifies Novel Mutations Expanding the Molecular and clinical spectrum of isolated Hearing Impairment or along with defects of the retina, the thyroid, and the kidneys. Mol Genet Genomic Med 2022; 10:e1868. [PMID: 34997822 PMCID: PMC8830811 DOI: 10.1002/mgg3.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background In the Tunisian population, the molecular analysis of hearing impairment remains based on conventional approaches, which makes the task laborious and enormously expensive. Exploration of the etiology of Hearing Impairment and the early diagnosis of causal mutations by next‐generation sequencing help significantly alleviate social and economic problems. Methods We elaborated a custom SureSelectQXT panel for next‐generation sequencing of the coding sequences of 42 genes involved in isolated hearing impairment or along with defects of the retina, the thyroid, and the kidneys. Results We report eight pathogenic variants, four of which are novel in patients with isolated hearing impairment, hearing impairment, and renal tubular acidosis, Usher syndrome and Pendred syndrome. Functional studies using molecular modeling showed the severe impact of the novel missense mutations on the concerned proteins. Basically, we identified mutations in nuclear as well as mitochondrial genes in a Tunisian family with isolated hearing impairment, which explains definitely the phenotype detected since 2006. Conclusion Our results expanded the mutation spectrum and genotype‒phenotype correlation of isolated and syndromic hearing loss and also emphasized the importance of combining both targeted next‐generation sequencing and detailed clinical evaluation to elaborate a more accurate diagnosis for hearing impairment and related phenotypes especially in North African populations.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.,Medical Genetics Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mehdi Hasnaoui
- Department of Otorhinolaryngology, Tahar Sfar University Hospital of Mahdia, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nabil Idriss
- Department of Otorhinolaryngology, Tahar Sfar University Hospital of Mahdia, Sfax, Tunisia
| | - Hajer Aloulou
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Imen Chabchoub
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Bayen Maâlej
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Dorra Driss
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
12
|
Landry KK, Seward DJ, Dragon JA, Slavik M, Xu K, McKinnon WC, Colello L, Sweasy J, Wallace SS, Cuke M, Wood ME. Investigation of discordant sibling pairs from hereditary breast cancer families and analysis of a rare PMS1 variant. Cancer Genet 2021; 260-261:30-36. [PMID: 34852986 DOI: 10.1016/j.cancergen.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND It is likely that additional genes for hereditary breast cancer can be identified using a discordant sib pair design. Using this design we identified individuals harboring a rare PMS1 c.605G>A variant previously predicted to result in loss of function. OBJECTIVES A family-based design and predictive algorithms were used to prioritize candidate variants possibly associated with an increased risk of hereditary breast cancer. Functional analyses were performed for one of the candidate variants, PMS1 c.605G>A. METHODS 1) 14 discordant sister-pairs from hereditary breast cancer families were identified. 2) Whole exome sequencing was performed and candidate risk variants identified. 3) A rare PMS variant was identified in 2 unrelated affected sisters but no unaffected siblings. 4) Functional analysis of this variant was carried out using targeted mRNA sequencing. RESULTS Genotype-phenotype correlation did not demonstrate tracking of the variant with cancer in the family. Functional analysis revealed no difference in exon 6 incorporation, which was validated by analyzing PMS1 allele specific expression. CONCLUSIONS The PMS1 c.605G>A variant did not segregate with disease, and there was no variant-dependent impact on PMS1 exon 6 splicing, supporting this variant is likely benign. Functional analyses are imperative to understanding the clinical significance of predictive algorithms.
Collapse
Affiliation(s)
- K K Landry
- Department of Medicine Hematology-Oncology, UVM Medical Center, Burlington, VT, USA.
| | - D J Seward
- Department of Pathology and Laboratory Medicine, U-VM Larner College of Medicine, Burlington, VT, USA
| | - J A Dragon
- Department of Microbiology and Molecular Genetics, UVM Larner College of Medicine, Burlington, VT, USA
| | - M Slavik
- Department of Microbiology and Molecular Genetics, UVM Larner College of Medicine, Burlington, VT, USA
| | - K Xu
- Department of Pathology and Laboratory Medicine, U-VM Larner College of Medicine, Burlington, VT, USA
| | - W C McKinnon
- Department of Medicine Hematology-Oncology, UVM Medical Center, Burlington, VT, USA
| | - L Colello
- Department of Medicine Hematology-Oncology, UVM Medical Center, Burlington, VT, USA
| | - J Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - S S Wallace
- Department of Microbiology and Molecular Genetics, UVM Larner College of Medicine, Burlington, VT, USA
| | - M Cuke
- Department of Medicine Hematology-Oncology, UVM Medical Center, Burlington, VT, USA
| | - M E Wood
- Department of Medicine Hematology-Oncology, UVM Medical Center, Burlington, VT, USA
| |
Collapse
|
13
|
Tang J, Tu K, Lu K, Zhang J, Luo K, Jin H, Wang L, Yang L, Xiao W, Zhang Q, Liu X, Ge XY, Li G, Zhou Z, Xie D. Single-cell exome sequencing reveals multiple subclones in metastatic colorectal carcinoma. Genome Med 2021; 13:148. [PMID: 34507604 PMCID: PMC8434739 DOI: 10.1186/s13073-021-00962-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cancer type whose mechanism of metastasis remains elusive. METHODS In this study, we characterised the evolutionary pattern of metastatic CRC (mCRC) by analysing bulk and single-cell exome sequencing data of primary and metastatic tumours from 7 CRC patients with liver metastases. Here, 7 CRC patients were analysed by bulk whole-exome sequencing (WES); 4 of these were also analysed using single-cell sequencing. RESULTS Despite low genomic divergence between paired primary and metastatic cancers in the bulk data, single-cell WES (scWES) data revealed rare mutations and defined two separate cell populations, indicative of the diverse evolutionary trajectories between primary and metastatic tumour cells. We further identified 24 metastatic cell-specific-mutated genes and validated their functions in cell migration capacity. CONCLUSIONS In summary, scWES revealed rare mutations that failed to be detected by bulk WES. These rare mutations better define the distinct genomic profiles of primary and metastatic tumour cell clones.
Collapse
Affiliation(s)
- Jie Tang
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Kailing Tu
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Keying Lu
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Jiaxun Zhang
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Kai Luo
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | | | - Lei Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Weiran Xiao
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Qilin Zhang
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xiaoling Liu
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Yi Ge
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Guibo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Dan Xie
- National Frontier Center of Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China. .,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Ben Ayed-Guerfali D, Ben Kridis-Rejab W, Ammous-Boukhris N, Ayadi W, Charfi S, Khanfir A, Sellami-Boudawara T, Frikha M, Daoud J, Mokdad-Gargouri R. Novel and recurrent BRCA1/BRCA2 germline mutations in patients with breast/ovarian cancer: a series from the south of Tunisia. J Transl Med 2021; 19:108. [PMID: 33726785 PMCID: PMC7962399 DOI: 10.1186/s12967-021-02772-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background The incidence of breast cancer (BC) and/or ovarian cancer (OC) is increasing in Tunisia especially in young women and mostly those with family history. However, the spectrum of BRCA mutations remains little explored in Tunisian patients in particular in the southern region. Methods We sequenced the entire coding regions of BRCA1and BRCA2 genes using next generation sequencing (NGS) in 134 selected patients with BC and/or OC. Results Among the 134 patients, 19 (14.17%) carried pathogenic mutations (10 are BRCA1 mutation carriers and 9 are BRCA2 mutation carriers) that are mainly frameshift index (76.9%). Interestingly, 5 out of the 13 variants (38.46%) were found at least twice in unrelated patients, as the c.1310-1313 delAAGA in BRCA2 and the c.5030_5033 delCTAA that has been identified in 4/98 BC patients and in 3/15 OC patients from unrelated families with strong history of cancer. Besides recurrent mutations, 6 variant (4 in BRCA1 and 2 in BRCA2) were not reported previously. Furthermore, 3 unrelated patients carried the VUS c.9976A > T, (K3326*) in BRCA2 exon 27. BRCA carriers correlated significantly with tumor site (p = 0.029) and TNBC cases (p = 0.008). In the groups of patients aged between 31 and 40, and 41–50 years, BRCA1 mutations occurred more frequently in patients with OC than those with BC, and conversely BRCA2 carriers are mostly affected with BC (p = 0.001, and p = 0.044 respectively). Conclusions The overall frequency of the BRCA germline mutations was 14.17% in patients with high risk of breast/ovarian cancer. We identified recurrent mutations as the c.1310_1313 delAAGA in BRCA2 gene and the c.5030_5033 delCTAA in BRCA1 gene that were found in 4% and 20% of familial BC and OC respectively. Our data will contribute in the implementation of genetic counseling and testing for families with high-risk of BC and/or OC.
Collapse
Affiliation(s)
- Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | | | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomo-pathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Afef Khanfir
- Department of Oncology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | - Mounir Frikha
- Department of Oncology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
15
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Boujemaa M, Hamdi Y, Mejri N, Romdhane L, Ghedira K, Bouaziz H, El Benna H, Labidi S, Dallali H, Jaidane O, Ben Nasr S, Haddaoui A, Rahal K, Abdelhak S, Boussen H, Boubaker MS. Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary breast cancer in Tunisia. PLoS One 2021; 16:e0245362. [PMID: 33503040 PMCID: PMC7840007 DOI: 10.1371/journal.pone.0245362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Ben Nasr
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
17
|
Karamat U, Ejaz S. Overexpression of RAD50 is the Marker of Poor Prognosis and Drug Resistance in Breast Cancer Patients. Curr Cancer Drug Targets 2021; 21:163-176. [PMID: 33038913 DOI: 10.2174/1568009620666201009125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of breast cancer is increasing at an alarming rate and thus demands exploration of the most relevant diagnostic biomarkers. RAD50 is a cancer susceptibility gene that encodes a DNA damage repairing protein. Its role in breast cancer as clinico-pathological specific biomarker has yet to be explored. OBJECTIVE This study was aimed to investigate the RAD50 expression and its promoter's methylation level variations in breast invasive carcinoma patients having different clinico-pathological features. This study further explored the mutational spectrum of RAD50 and the correlation of its expression with the survival of patients and the effectiveness of drugs used for treatment. METHODS Enrichment analysis of RAD50 was accomplished using the platform of GeneCards. The information regarding RAD50 expression, its promoter methylation and impact on survival of patient was retrieved from TCGA and CPTAC databases. However, the effect of RAD50 expression on tumor's response to various drugs was deduced through the analysis of CCLE and genomic of GDSC dataset. RESULTS The promoter hyper-methylation and elevated expression of RAD50 was documented in various subgroups of breast invasive carcinoma. The subjects having low/medium expression levels were observed to survive longer than patients exhibiting high expression of RAD50 except for post-menopausal subjects. The frequency of missense mutations was higher in RAD50 than truncating mutations. Most of the drugs were found to have a positive correlation with RAD50 expression. CONCLUSION The status of RAD50 promoter's methylation inversely correlates with the expression level of RAD50. While RAD50 is overexpressed in breast cancer patients and thus makes tumor resistant against many anti-cancer drugs.
Collapse
Affiliation(s)
- Uzma Karamat
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahwalpur, Bahwalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahawalpur, Bahwalpur, Pakistan
| |
Collapse
|
18
|
A Biomarker Panel of Radiation-Upregulated miRNA as Signature for Ionizing Radiation Exposure. Life (Basel) 2020; 10:life10120361. [PMID: 33352926 PMCID: PMC7766228 DOI: 10.3390/life10120361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation causes serious injury to the human body and has long-time impacts on health. It is important to find optimal biomarkers for the early quick screening of exposed individuals. A series of miRNAs signatures have been developed as the new biomarkers for diagnosis, survival, and prognostic prediction of cancers. Here, we have identified the ionizing radiation-inducible miRNAs profile through microarray analysis. The biological functions were predicted for the top six upregulated miRNAs by 4 Gy γ-rays: miR-1246, miR-1307-3p, miR-3197, miR-4267, miR-5096 and miR-7641. The miRNA-gene network and target gene-pathway network analyses revealed that DNAH3 is the target gene associated with all the six miRNAs. GOLGB1 is related to 4 miRNAs and other 26 genes targeted by 3 miRNAs. The upregulation of fifteen miRNAs were further verified at 4 h and 24 h after 0 to 10 Gy irradiation in the human lymphoblastoid AHH-1 cells, and some demonstrated a dose-dependent increased. Six miRNAs, including miR-145, miR-663, miR-1273g-3p, miR-6090, miR-6727-5p and miR-7641, were validated to be dose-dependently upregulated at 4 h or 24 h post-irradiation in both AHH-1 and human peripheral blood lymphocytes irradiated ex vivo. This six-miRNA signature displays the superiority as a radiation biomarker for the translational application of screening and assessment of radiation exposed individuals.
Collapse
|
19
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Gowthami J, Gururaj N, Mahalakshmi V, Sathya R, Sabarinath TR, Doss DM. Genetic predisposition and prediction protocol for epithelial neoplasms in disease-free individuals: A systematic review. J Oral Maxillofac Pathol 2020; 24:293-307. [PMID: 33456239 PMCID: PMC7802851 DOI: 10.4103/jomfp.jomfp_348_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background Epithelial neoplasm is an important global health-care problem, with high morbidity and mortality rates. Early diagnosis and appropriate treatment are essential for increased life survival. Prediction of occurrence of malignancy in a disease-free individual by any means will be a great breakthrough for healthy living. Aims and Objectives The aims and objectives were to predict the genetic predisposition and propose a prediction protocol for epithelial malignancy of various systems in our body, in a disease-free individual. Methods We have searched databases both manually and electronically, published in English language in Cochrane group, Google search, MEDLINE and PubMed from 2000 to 2019. We have included all the published, peer-reviewed, narrative reviews; randomized controlled trials; case-control studies; and cohort studies and excluded the abstract-only articles and duplicates. Specific words such as "etiological factors," "pathology and mutations," "signs and symptoms," "genetics and IHC marker," and "treatment outcome" were used for the search. A total of 1032 citations were taken, and only 141 citations met the inclusion criteria and were analyzed. Results After analyzing various articles, the etiological factors, clinical signs and symptoms, genes and the pathology involved and the commonly used blood and tissue markers were analyzed. A basic investigation strategy using immunohistochemistry markers was established. Conclusion The set of proposed biomarkers should be studied in future to predict genetic predisposition in disease-free individuals.
Collapse
Affiliation(s)
- J Gowthami
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - N Gururaj
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - V Mahalakshmi
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - R Sathya
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - T R Sabarinath
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Daffney Mano Doss
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
21
|
Ben Kridis-Rejeb W, Ben Ayed-Guerfali D, Ammous-Boukhris N, Ayadi W, Kifagi C, Charfi S, Saguem I, Sellami-Boudawara T, Daoud J, Khanfir A, Mokdad-Gargouri R. Identification of novel candidate genes by exome sequencing in Tunisian familial male breast cancer patients. Mol Biol Rep 2020; 47:6507-6516. [PMID: 32901360 DOI: 10.1007/s11033-020-05703-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Male Breast Cancer (MBC) is a rare and aggressive disease that is associated with genetic factors. Mutations in BRCA1 and BRCA2 account for 10% of all MBC cases suggesting that other genetic factors are involved. The aim of the present study is to screen whole BRCA1 and BRCA2 exons using the Ampliseq BRCA panel in Tunisian MBC patients with family history. Furthermore, we performed exome sequencing using the TruSight One sequencing panel on an early onset BRCA negative patient. We showed that among the 6 MBC patients, only one (MBC-F1) harbored a novel frameshift mutation in exon 2 of the BRCA2 gene (c.17-20delAAGA, p.Lys6Xfs) resulting in a short BRCA2 protein of only 6 amino-acids. We selected 9 rare variants after applying several filter steps on the exome sequencing data. Among these variants, and based on their role in breast carcinogenesis, we retained 6 candidate genes (MSH5, DCC, ERBB3, NOTCH3, DIAPH1, and DNAH11). Further studies are needed to confirm the association of the selected genes with family MBC.
Collapse
Affiliation(s)
| | - Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Chamseddine Kifagi
- Division of Immunology & Vaccinology, DTU Nanotech, Department of Micro-and Nanotechnology, Kemitorvet, Buildings 202 and 204, Lyngby Campus, 2800, Kgs. Lyngby, Denmark
| | - Slim Charfi
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Ines Saguem
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Tahia Sellami-Boudawara
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
22
|
Expanding cancer predisposition genes with ultra-rare cancer-exclusive human variations. Sci Rep 2020; 10:13462. [PMID: 32778766 PMCID: PMC7418036 DOI: 10.1038/s41598-020-70494-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
It is estimated that up to 10% of cancer incidents are attributed to inherited genetic alterations. Despite extensive research, there are still gaps in our understanding of genetic predisposition to cancer. It was theorized that ultra-rare variants partially account for the missing heritable component. We harness the UK BioBank dataset of ~ 500,000 individuals, 14% of which were diagnosed with cancer, to detect ultra-rare, possibly high-penetrance cancer predisposition variants. We report on 115 cancer-exclusive ultra-rare variations and nominate 26 variants with additional independent evidence as cancer predisposition variants. We conclude that population cohorts are valuable source for expanding the collection of novel cancer predisposition genes.
Collapse
|
23
|
Midha MK, Huang YF, Yang HH, Fan TC, Chang NC, Chen TH, Wang YT, Kuo WH, Chang KJ, Shen CY, Yu AL, Chiu KP, Chen CJ. Comprehensive Cohort Analysis of Mutational Spectrum in Early Onset Breast Cancer Patients. Cancers (Basel) 2020; 12:E2089. [PMID: 32731431 PMCID: PMC7464007 DOI: 10.3390/cancers12082089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Early onset breast cancer (EOBC), diagnosed at age ~40 or younger, is associated with a poorer prognosis and higher mortality rate compared to breast cancer diagnosed at age 50 or older. EOBC poses a serious threat to public health and requires in-depth investigation. We studied a cohort comprising 90 Taiwanese female patients, aiming to unravel the underlying mechanisms of EOBC etiopathogenesis. Sequence data generated by whole-exome sequencing (WES) and whole-genome sequencing (WGS) from white blood cell (WBC)-tumor pairs were analyzed to identify somatic missense mutations, copy number variations (CNVs) and germline missense mutations. Similar to regular breast cancer, the key somatic mutation-susceptibility genes of EOBC include TP53 (40% prevalence), PIK3CA (37%), GATA3 (17%) and KMT2C (17%), which are frequently reported in breast cancer; however, the structural protein-coding genes MUC17 (19%), FLG (16%) and NEBL (11%) show a significantly higher prevalence in EOBC. Furthermore, the top 2 genes harboring EOBC germline mutations, MUC16 (19%) and KRT18 (19%), encode structural proteins. Compared to conventional breast cancer, an unexpectedly higher number of EOBC susceptibility genes encode structural proteins. We suspect that mutations in structural proteins may increase physical permeability to environmental hormones and carcinogens and cause breast cancer to occur at a young age.
Collapse
Affiliation(s)
- Mohit K. Midha
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; (M.K.M.); (Y.-F.H.); (T.-H.C.); (C.-J.C.)
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Feng Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; (M.K.M.); (Y.-F.H.); (T.-H.C.); (C.-J.C.)
| | - Hsiao-Hsiang Yang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu 300, Taiwan;
| | - Tan-Chi Fan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan 333, Taiwan; (T.-C.F.); (N.-C.C.); (A.L.Y.)
| | - Nai-Chuan Chang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan 333, Taiwan; (T.-C.F.); (N.-C.C.); (A.L.Y.)
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; (M.K.M.); (Y.-F.H.); (T.-H.C.); (C.-J.C.)
| | - Yu-Tai Wang
- National Center for High-Performance Computing, Hsinchu Science Park, Hsinchu 300, Taiwan;
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan; (W.-H.K.); (K.-J.C.)
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan; (W.-H.K.); (K.-J.C.)
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan 333, Taiwan; (T.-C.F.); (N.-C.C.); (A.L.Y.)
- Department of Pediatrics, University of California in San Diego, San Diego, CA 92161, USA
| | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; (M.K.M.); (Y.-F.H.); (T.-H.C.); (C.-J.C.)
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
- Department of Life Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; (M.K.M.); (Y.-F.H.); (T.-H.C.); (C.-J.C.)
| |
Collapse
|
24
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
25
|
Genetic variants association with cancers in African-based populations: A systematic review. Cancer Epidemiol 2020; 67:101739. [PMID: 32554299 DOI: 10.1016/j.canep.2020.101739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is the single leading cause of human deaths worldwide. The highest incidence and mortality are recorded from Africa. The last two decades have witnessed extensive research which has led to emerging prognosis and new gene therapy technologies. Cancer therapy in Africa is derived with little input from African population data. While a number of cancer studies on African populations have suggested varied susceptible variant, no comprehensive review of these studies has been undertaken to assess their coverage across Africa. METHODS This study aimed to undertake a review of all molecular genetic studies that interrogated the genetic variants of cancers in African-based populations. Our search methodology was modelled after the Cochrane systematic review protocol, which included MeSH terms and related keywords. RESULTS Ninety-seven articles studying 13 cancer types, were reviewed. 91 articles screened for polymorphisms using PCR-based techniques while three used SNP array, two used whole exome sequencing and one used pyrosequencing. North African (NA) countries undertook 51/97 (53 %) studies on 12/13 (92 %) cancer types while the Sub Saharan Africa (SSA) countries undertook 46/97 (47 %) studies on 7/13 (54 %) cancer types. Twelve out of these thirteen cancer type studies suggested susceptibility to their target polymorphism (p > 0.05). No study replicated or validated variants detected. CONCLUSION Research on genetic determinants in African-based population cancer offers translational benefits. We recommended large scale, multi-national genome association studies using high throughput techniques. SSA needs to receive more attention due to the shortage of this type of study and data in the region.
Collapse
|
26
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
27
|
Zelli V, Compagnoni C, Cannita K, Capelli R, Capalbo C, Di Vito Nolfi M, Alesse E, Zazzeroni F, Tessitore A. Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer. High Throughput 2020; 9:ht9010001. [PMID: 31936873 PMCID: PMC7151204 DOI: 10.3390/ht9010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
| | - Katia Cannita
- Medical Oncology Unit, St Salvatore Hospital, Via L. Natali 1, 67100 L’Aquila, Italy;
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
| | - Carlo Capalbo
- Department of Molecular Medicine, University of Rome “La Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (M.D.V.N.); (E.A.); (F.Z.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
28
|
Xing Z, Guo G, Pan X, Xu L, Guo C, An R. The Association Between hMLH1 and hMSH2 Polymorphisms and Renal Tumors in Northeastern China. Genet Test Mol Biomarkers 2019; 23:573-579. [PMID: 31373852 DOI: 10.1089/gtmb.2019.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Although hMLH1 and hMSH2 are closely associated with the development and drug resistance of multiple types of tumors, their role in renal tumors remains unclear. This study was designed to examine the relationship between renal tumor development and polymorphisms in the hMLH1 and hMSH2 genes. Methods: The study included 180 patients with renal tumors that were confirmed by pathological examination and 199 healthy controls. The clinical and pathological stages of the tumor samples were determined, and DNA was extracted from the peripheral blood of the subjects. Polymorphisms in the hMLH1 and hMSH2 loci were identified using the 1000 genomes database and the multiplex ligase detection method. Correlation analyses was performed using single nucleotide polymorphism tests. Results: 88.9% (160/180) of the tumor specimens were identified as clear cell renal cell carcinoma (CCRC) and 89.4% (161/180) were stage I carcinomas. Three hMLH1 and nine hMSH2 polymorphic sites were identified, and the frequency of the AA genotype of the hMSH2 rs2303424 variant was found to be significantly higher in the renal tumor group (odds ratio [OR] = 1.37, 95% confidence interval [CI]: 1.02-1.86) in the additive model (p = 0.029), the recessive model (p = 0.005), and codominant model (p = 0.02). Multiple testing corrections were performed and the differences between the clear cell carcinoma and control samples remained significant. Compared with the controls, the distribution of the GG genotype of the hMSH2 rs11886591 locus was significantly higher in the clear cell carcinoma group (OR = 0.80, 95% CI: 0.59-1.10, p = 0.04) after multiple testing corrections in the dominant model. Conclusion: The AA genotype at the rs2303424 locus and GG genotype at rs11886591 locus of the DNA repair gene hMSH2 were closely associated with the development of renal tumors. Further studies are needed on larger cohorts to confirm this correlation.
Collapse
Affiliation(s)
- Zhaohui Xing
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiying Guo
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinling Pan
- 2Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lidan Xu
- 3Department of Genetics, Harbin Medical University, Harbin, China
| | - Chaopu Guo
- 4Department of Surgery, Traditional Chinese Medicine Hospital of Yanggu, Liaocheng, China
| | - Ruihua An
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Bope CD, Chimusa ER, Nembaware V, Mazandu GK, de Vries J, Wonkam A. Dissecting in silico Mutation Prediction of Variants in African Genomes: Challenges and Perspectives. Front Genet 2019; 10:601. [PMID: 31293624 PMCID: PMC6603221 DOI: 10.3389/fgene.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Genomic medicine is set to drastically improve clinical care globally due to high throughput technologies which enable speedy in silico detection and analysis of clinically relevant mutations. However, the variability in the in silico prediction methods and categorization of functionally relevant genetic variants can pose specific challenges in some populations. In silico mutation prediction tools could lead to high rates of false positive/negative results, particularly in African genomes that harbor the highest genetic diversity and that are disproportionately underrepresented in public databases and reference panels. These issues are particularly relevant with the recent increase in initiatives, such as the Human Heredity and Health (H3Africa), that are generating huge amounts of genomic sequence data in the absence of policies to guide genomic researchers to return results of variants in so-called actionable genes to research participants. This report (i) provides an inventory of publicly available Whole Exome/Genome data from Africa which could help improve reference panels and explore the frequency of pathogenic variants in actionable genes and related challenges, (ii) reviews available in silico prediction mutation tools and the criteria for categorization of pathogenicity of novel variants, and (iii) proposes recommendations for analyzing pathogenic variants in African genomes for their use in research and clinical practice. In conclusion, this work proposes criteria to define mutation pathogenicity and actionability in human genetic research and clinical practice in Africa and recommends setting up an African expert panel to oversee the proposed criteria.
Collapse
Affiliation(s)
- Christian Domilongo Bope
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Departments of Mathematics and Computer Sciences, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Emile R. Chimusa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Victoria Nembaware
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaston K. Mazandu
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jantina de Vries
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Farra C, Dagher C, Badra R, Hammoud MS, Alameddine R, Awwad J, Seoud M, Abbas J, Boulos F, El Saghir N, Mukherji D. BRCA mutation screening and patterns among high-risk Lebanese subjects. Hered Cancer Clin Pract 2019; 17:4. [PMID: 30675319 PMCID: PMC6339325 DOI: 10.1186/s13053-019-0105-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Previous studies have suggested that the prevalence of BRCA1 and 2 mutations in the Lebanese population is low despite the observation that the median age of breast cancer diagnosis is significantly lower than European and North American populations. We aimed at reviewing the rates and patterns of BRCA1/2 mutations found in individuals referred to the medical genetics unit at the American University of Beirut. We also evaluated the performance of clinical prediction tools. Methods We retrospectively reviewed the cases of all individuals undergoing BRCA mutation testing from April 2011 to May 2016. To put our findings in to context, we conducted a literature review of the most recently published data from the region. Results Two-hundred eighty one individuals were referred for testing. The prevalence of mutated BRCA1 or 2 genes were 6 and 1.4% respectively. Three mutations accounted for 54% of the pathogenic mutations found. The BRCA1 c.131G > T mutation was found among 5/17 (29%) unrelated subjects with BRCA1 mutation and is unique to the Lebanese and Palestinian populations. For patients tested between 2014 and 2016, all patients positive for mutations fit the NCCN guidelines for BRCA mutation screening. The Manchester Score failed to predict pathogenic mutations. Conclusion The BRCA1 c.131G > T mutation can be considered a founder mutation in the Lebanese population detected among 5/17 (29%) of individuals diagnosed with a mutation in BRCA1 and among 7/269 families in this cohort. On review of recently published data regarding the landscape of BRCA mutations in the Middle East and North Africa, each region appears to have a unique spectrum of mutations.
Collapse
Affiliation(s)
- Chantal Farra
- 1Medical Genetics Unit and Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christelle Dagher
- 2Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rebecca Badra
- 1Medical Genetics Unit and Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Miza Salim Hammoud
- 2Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raafat Alameddine
- 2Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johnny Awwad
- 3Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Muhieddine Seoud
- 3Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jaber Abbas
- 4Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fouad Boulos
- 1Medical Genetics Unit and Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nagi El Saghir
- 2Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- 2Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
31
|
Bustos-Carpinteyro AR, Oliveira C, Sousa A, Oliveira P, Pinheiro H, Carvalho J, Magaña-Torres MT, Flores-Miramontes MG, Aguilar-Lemarroy A, Jave-Suárez LF, Peregrina-Sandoval J, Cruz-Ramos JA, Sánchez-López JY. CDH1 somatic alterations in Mexican patients with diffuse and mixed sporadic gastric cancer. BMC Cancer 2019; 19:69. [PMID: 30642281 PMCID: PMC6332846 DOI: 10.1186/s12885-019-5294-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diffuse gastric cancer (DGC) is associated with the reduction or absence of the expression of the cell adhesion protein E-cadherin (encoded by the CDH1 gene). Molecular characteristics are less well described for mixed gastric cancer (MGC). The main somatic alterations that have been described in the CDH1 gene are mutations, loss of heterozygosity (LOH) and promoter methylation. The aim was to analyze CDH1 somatic alterations in Mexican patients with diffuse and mixed gastric cancer. METHODS We searched for mutations in the CDH1 gene in tumor DNA from DGC (n = 13) and MGC (n = 7) patients by next generation sequencing (NGS). Validation of findings was performed using Sanger sequencing. LOH was analyzed using dinucleotide repeat markers surrounding the CDH1 gene, and methylation was investigated by DNA bisulfite conversion and sequencing. E-cadherin protein deficiency was analyzed by immunohistochemistry. RESULTS Seventeen point variants were identified by NGS, 13 of them were validated by Sanger sequencing. Only 1/13 had not been previously reported (c.-137C > A), and 12/13 were already reported as polymorphisms. Two DGC cases presented LOH at the locus 16q22.1 (13.3%). CDH1 promoter methylation was positive in (7/11) 63.6% and (4/6) 66.6% of the cases with DGC and MGC, respectively. E-cadherin protein deficiency was observed in 58.3% of DGC cases while 100% in MGC cases. CONCLUSIONS While no pathogenic somatic mutations were found that could explain the diffuse histology of gastric cancer in DGC and MGC, methylation was the most common somatic inactivation event of the CDH1 gene, and LOH was rare. The previously unreported c.-137C > A variant modify the CDH1 gene expression since it alters the binding sites for transcription factors.
Collapse
Affiliation(s)
- Andrea Rebeca Bustos-Carpinteyro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México.,Doctorado en Genética Humana, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Carla Oliveira
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Abel Sousa
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - Patricia Oliveira
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - Hugo Pinheiro
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal.,Department of Internal Medicine, Centro Hospitalar Tâmega e Sousa Avenida do Hospital Padre Américo, N° 210 4564-007, Guilhufe - Penafiel, Portugal
| | - Joana Carvalho
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México
| | - María Guadalupe Flores-Miramontes
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular. Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, CP 45510, Nextipac, Jalisco, México
| | | | - Josefina Yoaly Sánchez-López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México.
| |
Collapse
|