1
|
Zhang H, Lu C, Hu Z, Sun D, Li L, Wu H, Lu H, Lv B, Wang J, Dai S, Li X. Prediction and SHAP Analysis Integrating Morphological and Hemodynamic Parameters for Unruptured Intracranial Aneurysm Occlusion After Flow Diverter Treatment. CNS Neurosci Ther 2025; 31:e70386. [PMID: 40237244 PMCID: PMC12001072 DOI: 10.1111/cns.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Although most unruptured intracranial aneurysms (UIAs) have good prognosis after flow diverter (FD) treatment, some remain unoccluded for extended periods, posing a persistent rupture risk. This study aims to develop a predictive model for UIA occlusion after FD treatment through integrating morphological and hemodynamic parameters, which may be critical for personalized postoperative management. METHODS Data from patients with single UIAs treated with stand-alone FD were collected from June 2018 to December 2022 in four cerebrovascular disease centers. Morphological parameters were obtained from 3D reconstructed aneurysm models, and hemodynamic parameters were derived by computational fluid dynamics (CFD) analysis. A predictive model for aneurysm occlusion was constructed using various machine learning algorithms, including logistic regression, Random Forest, XGBoost, and K-Nearest Neighbors. Model performances were evaluated through repeated cross-validation, 0.632 bootstrap, and 0.632+ bootstrap. Shapley additive explanation (SHAP) analysis was employed to assess the contribution of each parameter to UIA occlusion. RESULTS Seventy-nine patients were reviewed; a total of 51 cases met the criteria, with an average age of 53.9 ± 9.9 years. The average aneurysm diameter was 3.72 ± 2.72 mm, comprising 29 occlusions and 22 non-occlusions. Five variables were selected for further modeling, including follow-up time > 6 months, aneurysm rupture ratio (ArR), occlusion ratio (OsR), parent artery wall shear stress (WSS), and the change of parent artery WSS. Logistic regression outperformed other algorithms, achieving an area under the curve (AUC) above 0.75, indicating good predictive performance. SHAP analysis revealed that the change of parent artery WSS contributed most significantly to accurate and early prediction. Additionally, a web application software was developed to assist clinicians in real-time aneurysm occlusion prediction. CONCLUSIONS This study developed a robust predictive model for UIA occlusion following FD treatment by integrating morphological and hemodynamic parameters, which may provide potentially valuable decision-making support for optimizing treatment strategies.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhen Hu
- Institute for Health InformaticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Deyu Sun
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Liang Li
- Department of Neurosurgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Hongxing Wu
- Department of NeurosurgeryPeople's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Hua Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bin Lv
- Department of Neurology, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| | - Jun Wang
- Department of Neurology, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| | - Shuhui Dai
- Department of Neurosurgery, Xijing 986 HospitalThe Fourth Military Medical UniversityXi'anChina
- National Translational Science Center for Molecular Medicine and Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xia Li
- Department of Neurosurgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
2
|
Bisighini B, Aguirre M, Pierrat B, Avril S. Machine learning and statistical shape modelling for real-time prediction of stent deployment in realistic anatomies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108583. [PMID: 39798281 DOI: 10.1016/j.cmpb.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND AND OBJECTIVE The rise in minimally invasive procedures has created a demand for efficient and reliable planning software to predict intra- and post-operative outcomes. Surrogate modelling has shown promise, but challenges remain, particularly in cardiovascular applications, due to the complexity of parametrising anatomical structures and the need for large training datasets. This study aims to apply statistical shape modelling and machine learning for predicting stent deployment in real time using patient-specific models. ► METHODS:: We built a statistical shape model starting from an open-source clinical dataset, which we then used to generate new synthetic cases. Finite element simulations of stent deployment were performed on these cases using an in-house software. A surrogate model was then trained to map the statistical features of the synthetic models to the corresponding stent configurations, evaluating sensitivity to dataset size. ► RESULTS:: Even with the smallest dataset (400 samples), the average prediction error in position among the tested cases never exceeded 8.6%, with a median one within the testing dataset of 1.6%. As the number of training samples increased (4900), we achieved a median position error lower than 0.1 mm (0.97%) and a maximum position error of 0.5 mm (4.8%). Notably, the largest errors occur in the radial direction of the stent, while the deployed length is accurately predicted in all the cases. ► CONCLUSIONS:: The consistent success in performance strongly suggests that surrogate modelling represents a clinically valuable tool for accurately computing stent deployment outcomes in real time, even within complex anatomical scenarios.
Collapse
Affiliation(s)
- Beatrice Bisighini
- Mines Saint-Etienne, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Miquel Aguirre
- Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034, Barcelona, Spain; International Centre for Numerical Methods in Engineering (CIMNE), Gran Capità, 08034, Barcelona, Spain
| | - Baptiste Pierrat
- Mines Saint-Etienne, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France.
| |
Collapse
|
3
|
Zhu S, Zou R, Lu Z, Yan Y, Wu Y, Xiang J, Huang Q. Application of virtual deployment and hemodynamic simulation in treatment of a basal arterial dissecting aneurysm using flow diverter: A case report and literature review. Heliyon 2025; 11:e42545. [PMID: 40028598 PMCID: PMC11872427 DOI: 10.1016/j.heliyon.2025.e42545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The application of flow diverters (FDs) to treat basilar artery (BA) aneurysms has been proven to be one of the most effective ways. The hemodynamic changes caused by FD have been proven to be a principal factor affecting the healing of aneurysms. Virtual deployment based on simulation technology can intuitively reflect the hemodynamic changes caused by FD, providing more information for the surgeon. A 6-year-old child presented with a week of persistent, severe headaches due to a large dissecting aneurysm in the upper-middle BA. To select the appropriate size of the stent and observe the changes in blood flow, the virtual deployment of the FD was completed in AneuPlan. The simulated results were in good agreement with postoperative digital subtraction angiography (DSA). Moreover, hemodynamic analysis indicated the overall thrombosis and healing of the aneurysm and the incomplete occlusion risk close to the left superior cerebellar artery, which was confirmed by the subsequent assessment following the FD deployment. Encouragingly, the DSA images at 28 weeks showed that the residual sac of the basilar artery aneurysm had been basically healed. This case report initially reflects the guiding role of AneuPlan in the endovascular treatment protocol for complex cerebrovascular diseases.
Collapse
Affiliation(s)
- Shijie Zhu
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rong Zou
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Zhiwen Lu
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yazhou Yan
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, 971 Hospital of People's Liberation Army (PLA), Qingdao, China
| | - Yina Wu
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Qinghai Huang
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Zhang T, Zhong W, Zhou D, Xu Y, Li M, Zhuang J, Wang D, Su W, Wang Y. Coil embolization strategy after flow diverter deployment in patients with intracranial vertebral artery dissection aneurysms: a study from a hemodynamic viewpoint. Neurosurg Rev 2025; 48:231. [PMID: 39939415 PMCID: PMC11821696 DOI: 10.1007/s10143-025-03207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 02/14/2025]
Abstract
Flow diverter (FD) deployment combined with coil therapy is effective and considered superior to FD deployment alone for treating large, complex anterior circulation aneurysms. However, the optimal strategy for coil usage in posterior circulation aneurysms, particularly intracranial vertebral artery dissection aneurysms (IVADAs), remains unclear. This study used patient-specific aneurysm models and finite element analysis to determine the ideal packing density (PD) of coils following FD placement in IVADAs. We prospectively analyzed 22 patients with 24 aneurysms, all treated with FD at our hospital. Hemodynamic parameters were analyzed before treatment, after FD alone, and at three different coiling rates (5%, 15%, and 25%) using software simulation. All 22 patients underwent FD procedures to treat IVADAs. FD deployment and additional coil use both reduced the inflow rate at the aneurysm neck, the inflow concentration index, and the mean velocity in the aneurysm. However, compared with FD treatment alone, coils provided a smaller reduction in these parameters. No significant difference in the reduction ratio was observed when the coiling PD increased from 5 to 15% and then to 25%. Further coil addition beyond a 5% PD produced no notable hemodynamic benefits. Adjunct coiling improves the post-FD hemodynamic environment of treated IVADAs. However, dense packing is unnecessary because the intra-aneurysmal hemodynamics tend to stabilize once the PD reaches approximately 5%.
Collapse
Affiliation(s)
- Tongfu Zhang
- Qilu Hospital of Shandong University, Jinan, China
- Yangxin County People's Hospital, Binzhou, China
| | | | - Donglin Zhou
- Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Qilu Hospital of Shandong University, Jinan, China
| | - Maogui Li
- Qilu Hospital of Shandong University, Jinan, China
| | | | - Donghai Wang
- Qilu Hospital of Shandong University, Jinan, China
| | - Wandong Su
- Qilu Hospital of Shandong University, Jinan, China
| | - Yunyan Wang
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Panneerselvam NK, Sudhir BJ, Kannath SK, Patnaik BSV. Influence of framing coil orientation and its shape on the hemodynamics of a basilar aneurysm model. Med Biol Eng Comput 2024; 62:3411-3432. [PMID: 38856881 DOI: 10.1007/s11517-024-03146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Aneurysms are bulges of an artery, which require clinical management solutions. Due to the inherent advantages, endovascular coil filling is emerging as the treatment of choice for intracranial aneurysms (IAs). However, after successful treatment of coil embolization, there is a serious risk of recurrence. It is well known that optimal packing density will enhance treatment outcomes. The main objective of endovascular coil embolization is to achieve flow stasis by enabling significant reduction in intra-aneurysmal flow and facilitate thrombus formation. The present study numerically investigates the effect of framing coil orientation on intra-aneurysmal hemodynamics. For the purpose of analysis, actual shape of the embolic coil is used, instead of simplified ideal coil shape. Typically used details of the framing coil are resolved for the analysis. However, region above the framing coil is assumed to be filled with a porous medium. Present simulations have shown that orientation of the framing coil loop (FCL) greatly influences the intra-aneurysmal hemodynamics. The FCLs which were placed parallel to the outlets of basilar tip aneurysm (Coil A) were found to reduce intra-aneurysmal flow velocity that facilitates thrombus formation. Involving the coil for the region is modeled using a porous medium model with a packing density of 20 % . The simulations indicate that the framing coil loop (FCL) has a significant influence on the overall outcome.
Collapse
Affiliation(s)
- Nisanth Kumar Panneerselvam
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - B J Sudhir
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| | - Santhosh K Kannath
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - B S V Patnaik
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| |
Collapse
|
6
|
Zhang J, Dai Z, Wang T, Zeng Y, Wei J, Zou R, Leng X, Xiang J, Zhou S. A multidimensional pre-operative planning method of unruptured vertebral artery dissecting aneurysms using three-dimensional AWE mapping and hemodynamic simulation. Clin Neurol Neurosurg 2024; 243:108398. [PMID: 38908320 DOI: 10.1016/j.clineuro.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE High-resolution magnetic resonance imaging (HR-MRI) can provide valuable insights into the evaluation of vascular pathological conditions, and 3D digital subtraction angiography (3D-DSA) offers clear visualization of the vascular morphology and hemodynamics. This study aimed to investigate the potential of a multimodal method to treat unruptured vertebral artery dissection aneurysms (u-VADAs) by fusing image data from HR-MRI and 3D-DSA. METHODS This observational study enrolled 5 patients diagnosed with u-VADAs, who were scheduled for interventional treatment. The image data of HR-MRI and 3D-DSA were merged by geometry software, resulting in a multimodal model. Quantified values of aneurysm wall enhancement (AWE), wall shear stress (WSS), neck velocity, inflow volume, intra-stent flow velocity (ISvelocity), and intra-aneurysmal velocity (IAvelocity) were calculated from the multimodal method. RESULTS We found the actual lengths of u-VADAs in the multimodal model were longer than the 3D-DSA model. We formulated surgical plannings based on the WSS, IA velocity, and neck velocity. The post-operative value of IAvelocity, neck velocity, and follow-up quantified values of AWE were decreased compared with the pre-operative condition. After that, u-VADAs were complete occlusion in four patients and near-complete occlusion in one patient during the 6th-month follow-up after surgery. CONCLUSION The multidimensional method combining HR-MRI with 3D-DSA may provide more valuable information for treating VADAs, with the potential to develop effective surgical planning.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Zifeng Dai
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Tianfan Wang
- ArteryFlow Technology Co., Ltd., Hangzhou, PR China
| | - Yiyong Zeng
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Jie Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Rong Zou
- ArteryFlow Technology Co., Ltd., Hangzhou, PR China
| | | | | | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, PR China.
| |
Collapse
|
7
|
Liu Z, Zhang M, Wang C, Wang Z, Liao X, Ou C, Si W. Flow diverters treatment planning of small- and medium-sized intracranial saccular aneurysms on the internal carotid artery via constraint-based virtual deployment. Int J Comput Assist Radiol Surg 2024; 19:1175-1183. [PMID: 38619792 DOI: 10.1007/s11548-024-03124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE The internal carotid artery (ICA) is a region with a high incidence for small- and medium-sized saccular aneurysms. However, the treatment relies heavily on the surgeon's experience to achieve optimal outcome. Although the finite element method (FEM) and computational fluid dynamics can predict the postoperative outcomes, due to the computational complexity of traditional methods, there is an urgent need for investigating the fast but versatile approaches related to numerical simulations of flow diverters (FDs) deployment coupled with the hemodynamic analysis to determine the treatment plan. METHODS We collected the preoperative and postoperative data from 34 patients (29 females, 5 males; mean age 55.74 ± 9.98 years) who were treated with a single flow diverter for small- to medium-sized intracranial saccular aneurysms on the ICA. The constraint-based virtual deployment (CVD) method is proposed to simulate the FDs expanding outward along the vessel centerline while be constrained by the inner wall of the vessel. RESULTS The results indicate that there were no significant differences in the reduction rates of wall shear stress and aneurysms neck velocity between the FEM and methods. However, the solution time of CVD was greatly reduced by 98%. CONCLUSION In the typical location of small- and medium-sized saccular aneurysms, namely the ICA, our virtual FDs deployment simulation effectively balances the computational accuracy and efficiency. Combined with hemodynamics analysis, our method can accurately represent the blood flow changes within the lesion region to assist surgeons in clinical decision-making.
Collapse
Affiliation(s)
- Zehua Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan street 1068, Shenzhen University Town, Nanshan District, Shenzhen, 518000, China
| | - Meng Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, Sungang West Road 3002, Futian District, Guangdong, 510000, China
| | - Chao Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, TiantanXili 6, Dongcheng District, Beijing, 100000, China
| | - Zhongxiao Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, TiantanXili 6, Dongcheng District, Beijing, 100000, China
| | - Xiangyun Liao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan street 1068, Shenzhen University Town, Nanshan District, Shenzhen, 518000, China
| | - Chubin Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Zhongshan 2nd Road 106, Yuexiu District, Guangdong, 510000, China.
| | - Weixin Si
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan street 1068, Shenzhen University Town, Nanshan District, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Abdollahi R, Shahi A, Roy D, Lessard S, Mongrain R, Soulez G. Virtual and analytical self-expandable braided stent treatment models. Med Eng Phys 2024; 126:104145. [PMID: 38621838 DOI: 10.1016/j.medengphy.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
The Flow Diverter is a self-expandable braided stent that has helped improve the effectiveness of cerebral aneurysm treatment during the last decade. The Flow Diverter's efficiency heavily relies on proper decision-making during the pre-operative phase, which is currently based on static measurements that fail to account for vessel or tissue deformation. In the context of providing realistic measurements, a biomechanical computational method is designed to aid physicians in predicting patient-specific treatment outcomes. The method integrates virtual and analytical treatment models, validated against experimental mechanical tests, and two patient treatment outcomes. In the case of both patients, deployed stent length was one of the validated result parameters, which displayed an error inferior to 1.5% for the virtual and analytical models. These results indicated both models' accuracy. However, the analytical model provided more accurate results with a 0.3% error while requiring a lower computational cost for length prediction. This computational method can offer designing and testing platforms for predicting possible intervention-related complications, patient-specific medical device designs, and pre-operative planning to automate interventional procedures.
Collapse
Affiliation(s)
- Reza Abdollahi
- Faculté de médecine, Université de Montréal, H3T 1J4, Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montréal, Canada
| | - Amirali Shahi
- Faculté de médecine, Université de Montréal, H3T 1J4, Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montréal, Canada
| | - Daniel Roy
- Faculté de médecine, Université de Montréal, H3T 1J4, Montréal, Canada; Département de Radiologie, Centre Hospitalier de l'Université de Montréal, H2X 0C1, Montréal, Canada
| | - Simon Lessard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montréal, Canada; École de Technologie Supérieure, H3C 1K3, Montréal, Canada
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, H3A 0C3, Montréal, Canada
| | - Gilles Soulez
- Faculté de médecine, Université de Montréal, H3T 1J4, Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montréal, Canada; Département de Radiologie, Centre Hospitalier de l'Université de Montréal, H2X 0C1, Montréal, Canada.
| |
Collapse
|
9
|
Wu ZB, Wan XY, Zhou MH, Liu YC, Maalim AA, Miao ZZ, Guo X, Zeng Y, Liao P, Gao LP, Xiang JP, Zhang HQ, Shu K, Lei T, Zhu MX. Classification and hemodynamic characteristics of delayed intracerebral hemorrhage following stent-assisted coil embolism in unruptured intracranial aneurysms. Front Neurol 2024; 15:1268433. [PMID: 38440116 PMCID: PMC10910101 DOI: 10.3389/fneur.2024.1268433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024] Open
Abstract
Background and objective Stent-assisted coil (SAC) embolization is a commonly used endovascular treatment for unruptured intracranial aneurysms (UIAs) but can be associated with symptomatic delayed intracerebral hemorrhage (DICH). Our study aimed to investigate the hemodynamic risk factors contributing to DICH following SAC embolization and to establish a classification for DICH predicated on hemodynamic profiles. Methods This retrospective study included patients with UIAs located in the internal carotid artery (ICA) treated with SAC embolization at our institution from January 2021 to January 2022. We focused on eight patients who developed postoperative DICH and matched them with sixteen control patients without DICH. Using computational fluid dynamics, we evaluated the hemodynamic changes in distal arteries [terminal ICA, the anterior cerebral artery (ACA), and middle cerebral artery (MCA)] pre-and post-embolization. We distinguished DICH-related arteries from unrelated ones (ACA or MCA) and compared their hemodynamic alterations. An imbalance index, quantifying the differential in flow velocity changes between ACA and MCA post-embolization, was employed to gauge the flow distribution in distal arteries was used to assess distal arterial flow distribution. Results We identified two types of DICH based on postoperative flow alterations. In type 1, there was a significant lower in the mean velocity increase rate of the DICH-related artery compared to the unrelated artery (-47.25 ± 3.88% vs. 42.85 ± 3.03%; p < 0.001), whereas, in type 2, there was a notable higher (110.58 ± 9.42% vs. 17.60 ± 4.69%; p < 0.001). Both DICH types demonstrated a higher imbalance index than the control group, suggesting an association between altered distal arterial blood flow distribution and DICH occurrence. Conclusion DICH in SAC-treated UIAs can manifest as either a lower (type 1) or higher (type 2) in the rate of velocity in DICH-related arteries. An imbalance in distal arterial blood flow distribution appears to be a significant factor in DICH development.
Collapse
Affiliation(s)
- Zeng-Bao Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hui Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Chao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ali Abdi Maalim
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Zhuang Miao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ping Gao
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | | | - Hua-Qiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Xin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Hu X, Deng P, Ma M, Tang X, Qian J, Wu G, Gong Y, Gao L, Zou R, Leng X, Xiang J, Wu J, Ding Z. How does the recurrence-related morphology characteristics of the Pcom aneurysms correlated with hemodynamics? Front Neurol 2023; 14:1236757. [PMID: 37869148 PMCID: PMC10585265 DOI: 10.3389/fneur.2023.1236757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Posterior communicating artery (Pcom) aneurysm has unique morphological characteristics and a high recurrence risk after coil embolization. This study aimed to evaluate the relationship between the recurrence-related morphology characteristics and hemodynamics. Method A total of 20 patients with 22 Pcom aneurysms from 2019 to 2022 were retrospectively enrolled. The recurrence-related morphology parameters were measured. The hemodynamic parameters were simulated based on finite element analysis and computational fluid dynamics. The hemodynamic differences before and after treatment caused by different morphological features and the correlation between these parameters were analyzed. Result Significant greater postoperative inflow rate at the neck (Qinflow), relative Qinflow, inflow concentration index (ICI), and residual flow volume (RFV) were reported in the aneurysms with wide neck (>4 mm). Significant greater postoperative RFV were reported in the aneurysms with large size (>7 mm). Significant greater postoperative Qinflow, relative Qinflow, and ICI were reported in the aneurysms located on the larteral side of the curve. The bending angle of the internal carotid artery at the initiation of Pcom (αICA@PCOM) and neck diameter had moderate positive correlations with Qinflow, relative Qinflow, ICI, and RFV. Conclusion The morphological factors, including aneurysm size, neck diameter, and αICA@PCOM, are correlated with the recurrence-inducing hemodynamic characteristics even after fully packing. This provides a theoretical basis for evaluating the risk of aneurysm recurrence and a reference for selecting a surgical plan.
Collapse
Affiliation(s)
- Xiaolong Hu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Peng Deng
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaoyu Tang
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jinghong Qian
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Gang Wu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuhui Gong
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liping Gao
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | - Rong Zou
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | | | | | - Jiandong Wu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Chen L, Leng X, Zheng C, Shan Y, Wang M, Bao X, Wu J, Zou R, Liu X, Xu S, Xiang J, Wan S. Computational fluid dynamics (CFD) analysis in a ruptured vertebral artery dissecting aneurysm implanted by Pipeline when recurrent after LVIS-assisted coiling treatment: Case report and review of the literatures. Interv Neuroradiol 2023; 29:442-449. [PMID: 35484808 PMCID: PMC10399494 DOI: 10.1177/15910199221097766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUNDS Hemodynamics plays an important role in the natural history of the process of rupture and recurrence of intracranial aneurysms. This study aimed to investigate the role of hemodynamics for recurrence in a vertebral artery dissecting aneurysm (VADA). METHODS A patient with a ruptured VADA firstly treated by low-profile visualized intraluminal support (LVIS)-assisted coiling, and was implanted with a Pipeline Embolization Device (PED) after aneurysm recurrence. Finite element analysis and computational fluid dynamics simulations were conducted in 6 serial imaging procedures, and the calculated hemodynamics was correlated with aneurysm recurrence. RESULTS Wall shear stress (WSS) was not effectively suppressed, resulting in aneurysm recurrence with initial entry tear to occur above the protuberance after 7 months of LVIS stent-assisted coiling. With the implantation of PED, WSS, inflow stream and velocity at the aneurysm neck significantly decreased. During the 3-month follow-up after PED deployment, there was significant shrinkage of the sac and the blood flow in the sac was reduced considerably. The 27-month follow-up after PED deployment indicated the aneurysm was stable. CONCLUSIONS The present case study suggests that insufficient suppression of high WSS and high inflow velocity at the neck of the parent artery, especially near the posterior inferior cerebellar artery, might be associated with aneurysm recurrence.
Collapse
Affiliation(s)
- Linhui Chen
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Chaobo Zheng
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yejie Shan
- ArteryFlow Technology Co., Ltd. Hangzhou, China
| | - Ming Wang
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Bao
- Department of Neurosurgery, Jinhua Central Hospital, Jinhua, China
| | - Jiong Wu
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Zou
- ArteryFlow Technology Co., Ltd. Hangzhou, China
| | - Xiaobo Liu
- Department of Neurosurgery, Jinhua Central Hospital, Jinhua, China
| | - Shanhu Xu
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Bisighini B, Aguirre M, Biancolini ME, Trovalusci F, Perrin D, Avril S, Pierrat B. Machine learning and reduced order modelling for the simulation of braided stent deployment. Front Physiol 2023; 14:1148540. [PMID: 37064913 PMCID: PMC10090671 DOI: 10.3389/fphys.2023.1148540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Endoluminal reconstruction using flow diverters represents a novel paradigm for the minimally invasive treatment of intracranial aneurysms. The configuration assumed by these very dense braided stents once deployed within the parent vessel is not easily predictable and medical volumetric images alone may be insufficient to plan the treatment satisfactorily. Therefore, here we propose a fast and accurate machine learning and reduced order modelling framework, based on finite element simulations, to assist practitioners in the planning and interventional stages. It consists of a first classification step to determine a priori whether a simulation will be successful (good conformity between stent and vessel) or not from a clinical perspective, followed by a regression step that provides an approximated solution of the deployed stent configuration. The latter is achieved using a non-intrusive reduced order modelling scheme that combines the proper orthogonal decomposition algorithm and Gaussian process regression. The workflow was validated on an idealized intracranial artery with a saccular aneurysm and the effect of six geometrical and surgical parameters on the outcome of stent deployment was studied. We trained six machine learning models on a dataset of varying size and obtained classifiers with up to 95% accuracy in predicting the deployment outcome. The support vector machine model outperformed the others when considering a small dataset of 50 training cases, with an accuracy of 93% and a specificity of 97%. On the other hand, real-time predictions of the stent deployed configuration were achieved with an average validation error between predicted and high-fidelity results never greater than the spatial resolution of 3D rotational angiography, the imaging technique with the best spatial resolution (0.15 mm). Such accurate predictions can be reached even with a small database of 47 simulations: by increasing the training simulations to 147, the average prediction error is reduced to 0.07 mm. These results are promising as they demonstrate the ability of these techniques to achieve simulations within a few milliseconds while retaining the mechanical realism and predictability of the stent deployed configuration.
Collapse
Affiliation(s)
- Beatrice Bisighini
- Mines Saint-Étienne, University Lyon, University Jean Monnet, INSERM, Saint-Étienne, France
- Predisurge, Grande Usine Creative 2, Saint-Etienne, France
- Department of Enterprise Engineering, University Tor Vergata, Rome, Italy
| | - Miquel Aguirre
- Mines Saint-Étienne, University Lyon, University Jean Monnet, INSERM, Saint-Étienne, France
- Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Barcelona, Spain
- International Centre for Numerical Methods in Engineering (CIMNE), Gran Capità, Barcelona, Spain
| | | | | | - David Perrin
- Predisurge, Grande Usine Creative 2, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Étienne, University Lyon, University Jean Monnet, INSERM, Saint-Étienne, France
| | - Baptiste Pierrat
- Mines Saint-Étienne, University Lyon, University Jean Monnet, INSERM, Saint-Étienne, France
| |
Collapse
|
13
|
Construction and Verification of a Risk Prediction Model for the Occurrence of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage Requiring Mechanical Ventilation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7656069. [PMID: 36845638 PMCID: PMC9957647 DOI: 10.1155/2023/7656069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Objectives Delayed cerebral ischemia (DCI) contributes to poor aneurysm prognosis. Subarachnoid hemorrhage and DCI have irreversible and severe consequences once they occur; therefore, early prediction and prevention are important. We investigated the risk factors for postoperative complications of DCI in patients with aneurysmal subarachnoid hemorrhage (aSAH) requiring mechanical ventilation in intensive care and validated a prediction model. Methods We retrospectively analyzed patients with aSAH who were treated in a French university hospital neuro-ICU between January 2010 and December 2015. The patients were randomized into a training group (144) and verification groups (60). Nomograms were validated in the training and verification groups, where receiver operating characteristic curve analysis was used to verify model discrimination; calibration curve and Hosmer-Lemeshow test were used to determine model calibration; and decision curve analysis (DCA) was used to verify clinical validity of the model. Results External ventricular drain (EVD), duration of mechanical ventilation, and treatment were significantly associated in the univariate analysis; EVD and rebleeding were significantly associated with the occurrence of DCI after aSAH. Binary logistic regression was used to select five clinicopathological characteristics to predict the occurrence of DCI in patients with aSAH requiring mechanical ventilation nomograms of the risk of DCI. Area under the curve values for the training and verification groups were 0.768 and 0.246, with Brier scores of 0.166 and 0.163, respectively. Hosmer-Lemeshow calibration test values for the training and verification groups were x 2 = 3.824 (P = 0.923) and x 2 = 10.868 (P = 0.285), respectively. Calibration curves showed good agreement. DCA indicated that the training and verification groups showed large positive returns in the broad risk range of 0-77% and 0-63%, respectively. Conclusions The predictive model of concurrent DCI in aSAH has theoretical and practical values and can provide individualized treatment options for patients with aSAH who require mechanical ventilation.
Collapse
|
14
|
Zhang M, Tian Z, Zhang Y, Zhang Y, Wang K, Leng X, Yang X, Xiang J, Liu J. How to perform intra-aneurysmal coil embolization after Pipeline deployment: a study from a hemodynamic viewpoint. J Neurointerv Surg 2023; 15:157-162. [PMID: 35135848 DOI: 10.1136/neurintsurg-2021-018361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/23/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pipeline embolization device (PED) deployment combined with coil therapy for large complex intracranial aneurysms is effective and considered superior to PED deployment alone. However, the optimal strategy for use of coils remains unclear. We used patient-specific aneurysm models and finite element analysis to determine the ideal packing density of coils after PED placement. METHODS Finite element analysis was used to provide a higher-fidelity model for accurate post-treatment computational fluid dynamics analysis to simulate the real therapeutic process of PED and all coils. We then calculated and analyzed the reduction ratio of velocity to identify the hemodynamic change during PED deployment and each coil embolization. RESULTS Sixteen consecutive patients underwent PED plus coil procedures to treat internal carotid artery intracranial aneurysms. After PED deployment, the intra-aneurysmal flow velocity significantly decreased (15.3 vs 10.0 cm/s; p<0.001). When the first coil was inserted, the flow velocity in the aneurysm further decreased and the reduction was significant (10.0 vs 5.3 cm/s; p<0.001). Analysis of covariance showed that the effect of the reduction ratio of velocity of the second coil was significantly lower than that of the first coil (p<0.001)-that is, when the packing density increased to 7.06%, the addition of coils produced no further hemodynamic effect. CONCLUSION Adjunct coiling could improve the post-PED hemodynamic environment in treated intracranial aneurysms. However, dense packing is not necessary because the intra-aneurysmal hemodynamics tend to stabilize as the packing density reaches an average of 7.06% or after insertion of the second coil.
Collapse
Affiliation(s)
- Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongbin Tian
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Jiang Y, Lu G, Ge L, Zou R, Li G, Wan H, Leng X, Xiang J, Zhang X. Hemodynamic Comparison of Treatment Strategies for Intracranial Vertebral Artery Fusiform Aneurysms. Front Neurol 2022; 13:927135. [PMID: 35873788 PMCID: PMC9296783 DOI: 10.3389/fneur.2022.927135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study comparatively analyzed the hemodynamic changes resulting from various simulated stent-assisted embolization treatments to explore an optimal treatment strategy for intracranial vertebral artery fusiform aneurysms. An actual vertebral fusiform aneurysm case treated by large coil post-stenting (PLCS) was used as a control. Materials and Methods A single case of an intracranial vertebral artery fusiform aneurysm underwent a preoperative and eight postoperative finite element treatment simulations: PLCS [single and dual Low-profile Visualized Intraluminal Support (LVIS)], Jailing technique (single and dual LVIS both simulated twice, Pipeline Embolization Device (PED) with or without large coils (LCs). Qualitative and quantitative assessments were performed to analyze the most common hemodynamic risk factors for recurrence. Results Jailing technique and PED-only had a high residual flow volume (RFV) and wall shear stress (WSS) on the large curvature of the blood flow impingement region. Quantitative analysis determined that PLSC and PED had a lower RFV compared to preoperative than did the jailing technique [PED+LC 2.46% < PLCS 1.2 (dual LVIS) 4.75% < PLCS 1.1 (single LVIS) 6.34% < PED 6.58% < Jailing 2.2 12.45% < Jailing 1.2 12.71% < Jailing 1.1 14.28% < Jailing 2.1 16.44%]. The sac-averaged flow velocity treated by PLCS, PED and PED+LC compared to preoperatively was significantly lower than the jailing technique [PED+LC = PLCS 1.2 (dual LVIS) 17.5% < PLCS 1.1 (single LVIS) = PED 27.5% < Jailing 1.2 = Jailing 2.2 32.5% < Jailing 1.1 37.5% < Jailing 2.1 40%]. The sac-averaged WSS for the PLCS 1.2 (dual LVIS) model was lower than the PED+LC, while the high WSS area of the Jailing 1 model was larger than for Jailing 2 [PLCS 1.2 38.94% (dual LVIS) < PED+LC 41% < PLCS 1.1 43.36% (single LVIS) < PED 45.23% < Jailing 2.1 47.49% < Jailing 2.2 47.79% < Jailing 1.1 48.97% < Jailing 1.2 49.85%]. Conclusions For fusiform aneurysms, post large coil stenting can provide a uniform coil configuration potentially reducing the hemodynamic risk factors of recurrence. Flow diverters also may reduce the recurrence risk, with long-term follow-up required, especially to monitor branch blood flow to prevent postoperative ischemia.
Collapse
Affiliation(s)
- Yeqing Jiang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Zou
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Hailin Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jianping Xiang
- ArteryFlow Technology Co., Ltd, Hangzhou, China
- *Correspondence: Jianping Xiang
| | - Xiaolong Zhang
- Huashan Hospital, Fudan University, Shanghai, China
- Xiaolong Zhang
| |
Collapse
|
16
|
Bernini M, Colombo M, Dunlop C, Hellmuth R, Chiastra C, Ronan W, Vaughan TJ. Oversizing of self-expanding nitinol vascular stents – A biomechanical investigation in the superficial femoral artery. J Mech Behav Biomed Mater 2022; 132:105259. [DOI: 10.1016/j.jmbbm.2022.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
17
|
Liu L, Mu Z, Kang Y, Huang S, Qiu X, Xue X, Fu M, Xue Q, Lv H, Gao B, Li S, Zhao P, Ding H, Wang Z. Hemodynamic mechanism of pulsatile tinnitus caused by venous diverticulum treated with coil embolization. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106617. [PMID: 35021137 DOI: 10.1016/j.cmpb.2022.106617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Coil embolization has become a new treatment method for pulsatile tinnitus (PT) caused by sigmoid sinus diverticulum (SSD). Although this therapy has achieved good results in clinical reports, the hemodynamic mechanism of coils in the treatment of PT in SSD remained unclear. METHODS Finite element method (FEM) and computational fluid dynamics (CFD) were combined to explore the hemodynamic mechanism of coil embolization in SSD treatment. Three personalized geometric models of sigmoid sinus were established according to the CTA data of patients. Coil model were established by FEM, and the hemodynamic differences of SSD before and after coiling were compared by transient CFD method. RESULTS Velocity streamlines disappeared in the SSD after coiling. At the peak time (t1 = 0.22 s), the SSD-average velocity decreased in every patient. The average value of the decreased in three patients was 0.154 ± 0.028 m/s (mean ± SD). Wall average pressure (Pavg) also showed a decline in every patient. Average of decrements of three patients was 17.69 ± 4.91 Pa (mean ± SD). Average WSS (WSSavg) was also reduced in every patient. The average value of WSS drop was 9.74 ± 3.02 Pa (mean ± SD). After coiling, the proportion of low-velocity region in the sigmoid sinus cortical plate dehiscence (SSCPD) area increased. Average of increments was 22.1 ± 5.36% (mean ± SD). CONCLUSIONS A reduction in SSD-average velocity, wall pressure, and WSS were the short-term hemodynamic mechanism of coil embolization for PT. Coil embolization increased the proportion of low-velocity region in the SSCPD area, thereby creating a hemodynamic environment that easily produced thrombus and protects blood vessels from the impact of blood flow. This phenomenon was the long-term effect of coil embolization.
Collapse
Affiliation(s)
- Li Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Mu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yizhou Kang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Suqin Huang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Qiu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaofei Xue
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Minrui Fu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qingxin Xue
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bin Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Shu Li
- National Institutes for Food and Drug Control Institute for Medical Device Control, China.
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
18
|
Wan H, Lu G, Ge L, Huang L, Jiang Y, Leng X, Xiang J, Zhang X. Hemodynamic Effects of Stent-Induced Straightening of Parent Artery vs. Stent Struts for Intracranial Bifurcation Aneurysms. Front Neurol 2022; 12:802413. [PMID: 35211076 PMCID: PMC8862758 DOI: 10.3389/fneur.2021.802413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective This study aims to compare the hemodynamic impact of stent-mesh and stent-induced straightening of the parent artery in intracranial bifurcation aneurysms using finite element method simulation. Material and Methods Three intracranial bifurcation aneurysms treated with different stent-assisted coil embolization were evaluated. Simulation using the finite element method was conducted for Solitaire, LVIS and Neuroform stents. Four models of each stent were established, including a pre-treatment baseline, stenting without parent artery straightening (presented as stent-mesh effect), no-stent with parent artery reconstruction (to reveal the straightening impact), and stenting with straightening (categorized as Models I–IV respectively). Hemodynamic characteristics of the four models for each stent were compared. Results In the Neuroform stent, compared with the pre-treatment model (100%), the mean WSS decreased to 82.3, 71.4, and 57.0% in Models II-IV, velocity to 88.3, 74.4, and 62.8%, and high flow volume (HFV, >0.3 m/s) to 77.7, 44.0, and 19.1%. For the LVIS stent, the mean WSS changed to 105.0, 40.2, and 39.8% in Models II to IV; velocity to 91.2, 58.1, and 52.5%, and HFV to 92.0, 56.1, and 43.9%. For the Solitaire stent, compared with the pre-treatment model (100%), the mean WSS of Models II-IV changed altered by 105.7, 42.6, and 39.4%, sac-averaged velocity changed to 111.3, 46.6, and 42.8%, and HFV 115.6, 15.1, and 13.6%. Conclusion The hemodynamic effect of straightening the parent artery of intracranial bifurcation aneurysms by stenting was noticeably improved over stent mesh diversion in all three stents tested. Therefore stent-induced remodeling of the parent artery appears to be the best method of decreasing recurrence in intracranial bifurcation aneurysms.
Collapse
Affiliation(s)
- Hailin Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Jiang
- Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
19
|
Galloy AE, Raghuram A, Nino MA, Varon Miller A, Sabotin R, Osorno-Cruz C, Samaniego EA, Raghavan SML, Hasan D. Analysis of Cerebral Aneurysm Wall Tension and Enhancement Using Finite Element Analysis and High-Resolution Vessel Wall Imaging. Front Neurol 2021; 12:764063. [PMID: 34956050 PMCID: PMC8702555 DOI: 10.3389/fneur.2021.764063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Biomechanical computational simulation of intracranial aneurysms has become a promising method for predicting features of instability leading to aneurysm growth and rupture. Hemodynamic analysis of aneurysm behavior has helped investigate the complex relationship between features of aneurysm shape, morphology, flow patterns, and the proliferation or degradation of the aneurysm wall. Finite element analysis paired with high-resolution vessel wall imaging can provide more insight into how exactly aneurysm morphology relates to wall behavior, and whether wall enhancement can describe this phenomenon. In a retrospective analysis of 23 unruptured aneurysms, finite element analysis was conducted using an isotropic, homogenous third order polynomial material model. Aneurysm wall enhancement was quantified on 2D multiplanar views, with 14 aneurysms classified as enhancing (CRstalk≥0.6) and nine classified as non-enhancing. Enhancing aneurysms had a significantly higher 95th percentile wall tension (μ = 0.77 N/cm) compared to non-enhancing aneurysms (μ = 0.42 N/cm, p < 0.001). Wall enhancement remained a significant predictor of wall tension while accounting for the effects of aneurysm size (p = 0.046). In a qualitative comparison, low wall tension areas concentrated around aneurysm blebs. Aneurysms with irregular morphologies may show increased areas of low wall tension. The biological implications of finite element analysis in intracranial aneurysms are still unclear but may provide further insights into the complex process of bleb formation and aneurysm rupture.
Collapse
Affiliation(s)
- Adam E Galloy
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Ashrita Raghuram
- Department of Neurology, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| | - Marco A Nino
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Alberto Varon Miller
- Department of Neurology, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| | - Ryan Sabotin
- Department of Neurology, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| | - Carlos Osorno-Cruz
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| | - Edgar A Samaniego
- Department of Neurology, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States.,Department of Radiology, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| | - Suresh M L Raghavan
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - David Hasan
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Chivukula VK, Marsh L, Chassagne F, Barbour MC, Kelly CM, Levy S, Geindreau C, du Roscoat SR, Kim LJ, Levitt MR, Aliseda A. Lagrangian Trajectory Simulation of Platelets and Synchrotron Microtomography Augment Hemodynamic Analysis of Intracranial Aneurysms Treated With Embolic Coils. J Biomech Eng 2021; 143:071002. [PMID: 33665669 PMCID: PMC8086186 DOI: 10.1115/1.4050375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2021] [Indexed: 11/08/2022]
Abstract
As frequency of endovascular treatments for intracranial aneurysms increases, there is a growing need to understand the mechanisms for coil embolization failure. Computational fluid dynamics (CFD) modeling often simplifies modeling the endovascular coils as a homogeneous porous medium (PM), and focuses on the vascular wall endothelium, not considering the biomechanical environment of platelets. These assumptions limit the accuracy of computations for treatment predictions. We present a rigorous analysis using X-ray microtomographic imaging of the coils and a combination of Lagrangian (platelet) and Eulerian (endothelium) metrics. Four patient-specific, anatomically accurate in vitro flow phantoms of aneurysms are treated with the same patient-specific endovascular coils. Synchrotron tomography scans of the coil mass morphology are obtained. Aneurysmal hemodynamics are computationally simulated before and after coiling, using patient-specific velocity/pressure measurements. For each patient, we analyze the trajectories of thousands of platelets during several cardiac cycles, and calculate residence times (RTs) and shear exposure, relevant to thrombus formation. We quantify the inconsistencies of the PM approach, comparing them with coil-resolved (CR) simulations, showing the under- or overestimation of key hemodynamic metrics used to predict treatment outcomes. We fully characterize aneurysmal hemodynamics with converged statistics of platelet RT and shear stress history (SH), to augment the traditional wall shear stress (WSS) on the vascular endothelium. Incorporating microtomographic scans of coil morphology into hemodynamic analysis of coiled intracranial aneurysms, and augmenting traditional analysis with Lagrangian platelet metrics improves CFD predictions, and raises the potential for understanding and clinical translation of computational hemodynamics for intracranial aneurysm treatment outcomes.
Collapse
Affiliation(s)
| | - Laurel Marsh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Fanette Chassagne
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Cory M. Kelly
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98195
| | - Samuel Levy
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98195
| | - Christian Geindreau
- Laboratoire 3SR, Université Grenoble Alpes, 1270 Rue de la Piscine, Gières 38610, France
| | | | - Louis J. Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98195; Department of Radiology, University of Washington, Seattle, WA 98195
| | - Michael R. Levitt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195; Department of Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98195; Department of Radiology, University of Washington, Seattle, WA 98195
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195; Department of Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98195
| |
Collapse
|
21
|
Pan C, Han Y, Lu J. Structural Design of Vascular Stents: A Review. MICROMACHINES 2021; 12:mi12070770. [PMID: 34210099 PMCID: PMC8305143 DOI: 10.3390/mi12070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
Percutaneous Coronary Intervention (PCI) is currently the most conventional and effective method for clinically treating cardiovascular diseases such as atherosclerosis. Stent implantation, as one of the ways of PCI in the treatment of coronary artery diseases, has become a hot spot in scientific research with more and more patients suffering from cardiovascular diseases. However, vascular stent implanted into vessels of patients often causes complications such as In-Stent Restenosis (ISR). The vascular stent is one of the sophisticated medical devices, a reasonable structure of stent can effectively reduce the complications. In this paper, we introduce the evolution, performance evaluation standards, delivery and deployment, and manufacturing methods of vascular stents. Based on a large number of literature pieces, this paper focuses on designing structures of vascular stents in terms of “bridge (or link)” type, representative volume unit (RVE)/representative unit cell (RUC), and patient-specific stent. Finally, this paper gives an outlook on the future development of designing vascular stents.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
- Institute of Engineering Medicine, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
- Correspondence:
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
| |
Collapse
|
22
|
Detection of clustered anomalies in single-voxel morphometry as a rapid automated method for identifying intracranial aneurysms. Comput Med Imaging Graph 2021; 89:101888. [PMID: 33690001 DOI: 10.1016/j.compmedimag.2021.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
Unruptured intracranial aneurysms (UIAs) are prevalent neurovascular anomalies which, in rare circumstances, rupture to cause a catastrophic subarachnoid haemorrhage. Although surgical management can reduce rupture risk, the majority of UIAs exist undiscovered until rupture. Current clinical practice in the detection of UIAs relies heavily on manual radiological review of standard imaging modalities. Recent computer-aided UIA diagnoses can sensitively detect and measure UIAs within cranial angiograms but remain limited to low specificities whose output also requires considerable radiologist interpretation not amenable to broad screening efforts. To address these limitations, we have developed a novel automatic pipeline algorithm which inputs medical images and outputs detected UIAs by characterising single-voxel morphometry of segmented neurovasculature. Once neurovascular anatomy of a specified resolution is segmented, correlations between voxel-specific morphometries are estimated and spatially-clustered outliers are identified as UIA candidates. Our automated solution detects UIAs within magnetic resonance angiograms (MRA) at unmatched 86% specificity and 81% sensitivity using 3 min on a conventional laptop. Our approach does not rely on interpatient comparisons or training datasets which could be difficult to amass and process for rare incidentally discovered UIAs within large MRA files, and in doing so, is versatile to user-defined segmentation quality, to detection sensitivity, and across a range of imaging resolutions and modalities. We propose this method as a unique tool to aid UIA screening, characterisation of abnormal vasculature in at-risk patients, morphometry-based rupture risk prediction, and identification of other vascular abnormalities.
Collapse
|
23
|
Leng X, Wan H, Li G, Jiang Y, Huang L, Siddiqui AH, Zhang X, Xiang J. Hemodynamic effects of intracranial aneurysms from stent-induced straightening of parent vessels by stent-assisted coiling embolization. Interv Neuroradiol 2021; 27:181-190. [PMID: 33641496 DOI: 10.1177/1591019921995334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Straightening of parent vessels happens for stent-assisted coiling embolization (SACE) treatment of intracranial aneurysms. This study aims to investigate aneurysmal hemodynamic modifications caused by stent-induced vessel straightening. METHODS Stent and coil deployments of a SACE-treated distal bifurcation aneurysm by finite element method were performed first with the preoperative (not straightened, NS) and postoperative (straightened, S) vessel models respectively. Computational fluid dynamics were then performed for eight models, including (I) NS only model, (II) NS+stent model, (III) NS+coils model, (IV) NS+stent+coils model, (V) S only model, (VI) S+stent model, (VII) S+coils model, and (VIII) S+stent+coils model. Finally, changes in aneurysmal flow velocity, isovelocity surface and wall shear stress (WSS) were analyzed qualitatively and quantitatively. RESULTS The flow was less in the S models than that in the corresponding NS models. Coils blocked most of the flow into the aneurysm sac in both NS models and S models and vessel straightening had more profound effect on the high aneurysmal flow volume reduction than coiling, while stenting generated adverse effect on flow reduction. Taking the NS only model as baseline (100%), the sac-averaged velocities of models II to VIII were 112%, 36%, 42%, 45%, 39%, 12%, 13%, and high flow volumes were 119%, 21%, 30%, 10%, 8%, 3%, 3%, while the sac-averaged WSSs were 106%, 37%, 44%, 41%, 35%, 17% and 24%, respectively. CONCLUSIONS Stent-induced vessel straightening combined coil embolization has the best performance in hemodynamic modifications and may reduce the recurrence rate, whereas stenting may generate adverse effect on hemodynamic alterations.
Collapse
Affiliation(s)
- Xiaochang Leng
- ArteryFlow Technology Co., Ltd., Hangzhou, China.,School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Hailin Wan
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | - Yeqing Jiang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Huang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Adnan H Siddiqui
- Department of Neurosurgery and Radiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | | |
Collapse
|
24
|
Wan H, Lu G, Huang L, Ge L, Jiang Y, Li G, Leng X, Xiang J, Zhang X. Hemodynamic Effect of the Last Finishing Coils in Packing the Aneurysm Neck. Front Neurol 2020; 11:598412. [PMID: 33329354 PMCID: PMC7714910 DOI: 10.3389/fneur.2020.598412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Using the finishing coils to densely pack the aneurysm neck is necessary. However, the exact hemodynamic effect of finishing coils in packing the aneurysm neck is unknown. Objective: To evaluate the hemodynamic characteristics of finishing coils to densely pack the aneurysm neck, using finite element method simulation. Methods: A computational study was performed based on a 44-year-old female patient with an unruptured wide-necked carotid-ophthalmic artery aneurysm treated with low-profile visualized intraluminal support stent-assisted coil embolization. Four computational fluid dynamics models including pre-treatment, post-stenting, common stent-assisted coil embolization (SACE), and common SACE with finishing coils were evaluated qualitatively and quantitatively. Results: Compared with the baseline of pretreatment model (100%), sac-averaged velocity in post-stenting, common SACE, and common SACE with finishing coil models decreased to 95.68%, 24.38%, and 13.20%, respectively; high flow volume (>0.1 m/s) around the aneurysm neck decreased to 92.19%, 9.59%, and 5.57%, respectively; and mean wall shear stress increased or decreased to 107%, 25.94%, and 23.89%, respectively. Conclusion: Finishing coils to densely pack the aneurysm neck can generate favorable hemodynamic modifications, which may decrease the recurrence.
Collapse
Affiliation(s)
- Hailin Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Jiang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | | | | | - Xiaolong Zhang
- Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiaolong Zhang
| |
Collapse
|
25
|
Tian Z, Zhang M, Li G, Jin R, Leng X, Zhang Y, Wang K, Zhang Y, Yang X, Xiang J, Liu J. Hemodynamic differences by increasing low profile visualized intraluminal support (LVIS) stent local compaction across intracranial aneurysm orifice. Interv Neuroradiol 2020; 26:557-565. [PMID: 32830566 DOI: 10.1177/1591019920952903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The Low-profile Visualized Intraluminal Support device (LVIS) has been successfully used to treat cerebral aneurysm, and the push-pull technique has been used clinically to compact the stent across aneurysm orifice. Our aim was to exhibit the hemodynamic effect of the compacted LVIS stent. METHODS Two patient-specific aneurysm models were constructed from three-dimensional angiographic images. The uniform LVIS stent, compacted LVIS and Pipeline Embolization Device (PED) with or without coil embolization were virtually deployed into aneurysm models to perform hemodynamic analysis. Intra-aneurysmal flow parameters were calculated to assess hemodynamic differences among different models. RESULTS The compacted LVIS had the highest metal coverage across the aneurysm orifice (case 1, 46.37%; case 2, 67.01%). However, the PED achieved the highest pore density (case 1, 19.56 pores/mm2; case 2, 18.07 pores/mm2). The compacted LVIS produced a much higher intra-aneurysmal flow reduction than the uniform LVIS. The PED showed a higher intra-aneurysmal flow reduction than the compacted LVIS in case 1, but the results were comparable in case 2. After stent placement, the intra-aneurysmal flow was further reduced as subsequent coil embolization. The compacted LVIS stent with coils produced a similar reduction in intra-aneurysmal flow to that of the PED. CONCLUSIONS The combined characteristics of stent metal coverage and pore density should be considered when assessing the flow diversion effects of stents. More intra-aneurysmal flow reductions could be introduced by compacted LVIS stent than the uniform one. Compared with PED, compacted LVIS stent may exhibit a flow-diverting effect comparable to that of the PED.
Collapse
Affiliation(s)
- Zhongbin Tian
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Rongbo Jin
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | | | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | | | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Cai Y, Meng Z, Jiang Y, Zhang X, Yang X, Wang S. Finite element modeling and simulation of the implantation of braided stent to treat cerebral aneurysm. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Damiano RJ, Tutino VM, Lamooki SR, Paliwal N, Dargush GF, Davies JM, Siddiqui AH, Meng H. Improving accuracy for finite element modeling of endovascular coiling of intracranial aneurysm. PLoS One 2019; 14:e0226421. [PMID: 31881029 PMCID: PMC6934293 DOI: 10.1371/journal.pone.0226421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/10/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Computer modeling of endovascular coiling intervention for intracranial aneurysm could enable a priori patient-specific treatment evaluation. To that end, we previously developed a finite element method (FEM) coiling technique, which incorporated simplified assumptions. To improve accuracy in capturing real-life coiling, we aimed to enhance the modeling strategies and experimentally test whether improvements lead to more accurate coiling simulations. METHODS We previously modeled coils using a pre-shape based on mathematical curves and mechanical properties based on those of platinum wires. In the improved version, to better represent the physical properties of coils, we model coil pre-shapes based on how they are manufactured, and their mechanical properties based on their spring-like geometric structures. To enhance the deployment mechanics, we include coil advancement to the aneurysm in FEM simulations. To test if these new strategies produce more accurate coil deployments, we fabricated silicone phantoms of 2 patient-specific aneurysms in duplicate, deployed coils in each, and quantified coil distributions from intra-aneurysmal cross-sections using coil density (CD) and lacunarity (L). These deployments were simulated 9 times each using the original and improved techniques, and CD and L were calculated for cross-sections matching those in the experiments. To compare the 2 simulation techniques, Euclidean distances (dMin, dMax, and dAvg) between experimental and simulation points in standardized CD-L space were evaluated. Univariate tests were performed to determine if these distances were significantly different between the 2 simulations. RESULTS Coil deployments using the improved technique agreed better with experiments than the original technique. All dMin, dMax, and dAvg values were smaller for the improved technique, and the average values across all simulations for the improved technique were significantly smaller than those from the original technique (dMin: p = 0.014, dMax: p = 0.013, dAvg: p = 0.045). CONCLUSION Incorporating coil-specific physical properties and mechanics improves accuracy of FEM simulations of endovascular intracranial aneurysm coiling.
Collapse
Affiliation(s)
- Robert J. Damiano
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Vincent M. Tutino
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Saeb R. Lamooki
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Nikhil Paliwal
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Gary F. Dargush
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jason M. Davies
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Adnan H. Siddiqui
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hui Meng
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jiang Y, Ge L, Di R, Lu G, Huang L, Li G, Leng X, Zhang S, Wan H, Geng D, Xiang J, Zhang X. Differences in hemodynamic characteristics under high packing density between the porous media model and finite element analysis in computational fluid dynamics of intracranial aneurysm virtual treatment. J Neurointerv Surg 2019; 11:853-858. [DOI: 10.1136/neurintsurg-2018-014218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/03/2022]
Abstract
ObjectiveThis study aimed to compare the hemodynamic differences among no sac (NOS), porous media (POM) and finite element analysis (FEA) models to investigate the recurrence-related risks for coiled intracranial aneurysms (IAs).MethodsThe study enrolled 10 patients with 11 IAs who received simple coiling treatment and hemodynamic simulations were performed for all IAs using the above three models. Velocity, wall shear stress (WSS) and residual flow volume (RFV) were calculated and compared in order to assess the model differences for both aneurysm sac and parent vessel regions.ResultsFor parent artery regions, all three models produced similar flow patterns and quantification analysis did not indicate differences in velocity and WSS (p>0.05). For aneurysm sac regions, the FEA model resulted in higher sac-maximized (0.18 m/s vs 0.06 m/s) and sac-averaged velocity (0.013 m/s vs 0.007 m/s), and higher sac-averaged (0.55 Pa vs 0.36 Pa, p=0.006) and sac-maximized WSS (12.1 Pa vs 6.6 Pa) than the POM model. The differences in RFV between the POM and FEA models under 11 different isovelocity thresholds (0.0001 m/s, 0.001 m/s, 0.002 m/s, 0.005 m/s, 0.01 m/s, 0.02 m/s, 0.05 m/s, 0.1 m/s, 0.2 m/s, 0.5 m/s, and 1 m/s) showed that the POM RFV was generally larger than those of the FEA model.ConclusionsCompared with the FEA model, the POM model provides a lower velocity and WSS and higher RFV for the aneurysm sac, which could lead to incorrect estimates of the recurrent risk of coiled IAs under high packing density.
Collapse
|