1
|
Noureddine M, Mikolajek H, Morgan NV, Denning C, Loughna S, Gehmlich K, Mohammed F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J Gen Physiol 2025; 157:e202413684. [PMID: 39918740 PMCID: PMC11804879 DOI: 10.1085/jgp.202413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
α-actinin (ACTN) is a pivotal member of the actin-binding protein family, crucial for the anchoring and organization of actin filaments within the cytoskeleton. Four isoforms of α-actinin exist: two non-muscle isoforms (ACTN1 and ACTN4) primarily associated with actin stress fibers and focal adhesions, and two muscle-specific isoforms (ACTN2 and ACTN3) localized to the Z-disk of the striated muscle. Although these isoforms share structural similarities, they exhibit distinct functional characteristics that reflect their specialized roles in various tissues. Genetic variants in α-actinin isoforms have been implicated in a range of pathologies, including cardiomyopathies, thrombocytopenia, and non-cardiovascular diseases, such as nephropathy. However, the precise impact of these genetic variants on the α-actinin structure and their contribution to disease pathogenesis remains poorly understood. This review provides a comprehensive overview of the structural and functional attributes of the four α-actinin isoforms, emphasizing their roles in actin crosslinking and sarcomere stabilization. Furthermore, we present detailed structural modeling of select ACTN1 and ACTN2 variants to elucidate mechanisms underlying disease pathogenesis, with a particular focus on macrothrombocytopenia and hypertrophic cardiomyopathy. By advancing our understanding of α-actinin's role in both normal cellular function and disease states, this review lays the groundwork for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Halina Mikolajek
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Neil V. Morgan
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Garcia YE, Sjögren B, Osei-Owusu P. G protein regulation by RGS proteins in the pathophysiology of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2025; 328:H348-H360. [PMID: 39772618 PMCID: PMC12103878 DOI: 10.1152/ajpheart.00653.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Regulators of G protein signaling (RGS) proteins fine-tune signaling via heterotrimeric G proteins to maintain physiologic homeostasis in various organ systems of the human body including the brain, kidney, heart, and vasculature. Impaired regulation of G protein signaling by RGS proteins is implicated in the pathogenesis of several human diseases including various forms of cardiomyopathy such as hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Both genetic and nongenetic changes that impinge on G protein signaling in cardiomyocytes are implicated in the etiology of DCM, and there is accumulating evidence that such genetic and nongenetic changes affecting G protein signaling in cell types other than cardiomyocytes could serve as a DCM trigger in humans. This review discusses and highlights mammalian RGS proteins and their roles in cardiac physiology and disease, with a specific focus on the current understanding of the etiology of DCM and the pathogenic roles of RGS proteins that are prominently expressed in the cardiovascular system. Growing evidence suggests that defects in G protein regulation by RGS proteins in the cardiovascular system likely contribute to cardiomyocyte structural damage and decreased contractile function that hallmark DCM. Further studies that enhance the understanding of the dynamics of G protein regulation by RGS proteins in several cell types in the myocardium and the vasculature are critical to gaining more insight into the etiology of DCM and heart failure, and to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Yadhira E Garcia
- Department of Pharmaceutical Sciences, University of California, Irvine, California, United States
| | - Benita Sjögren
- Department of Pharmaceutical Sciences, University of California, Irvine, California, United States
- Department of Biological Chemistry, University of California, Irvine, California, United States
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
3
|
Acuña-Ochoa JG, Balderrábano-Saucedo NA, Cepeda-Nieto AC, Alvarado-Cervantes MY, Ibarra-Garcia VL, Barr D, Gage MJ, Pfeiffer R, Hu D, Barajas-Martinez H. A De Novo Mutation in ACTC1 and a TTN Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case. Case Rep Genet 2024; 2024:9517735. [PMID: 39759977 PMCID: PMC11699985 DOI: 10.1155/crig/9517735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD. A total of 132 genes (48 structure- and 84 electrical-related genes) were examined by next generation sequencing to identify potential causative mutations in comparison to control population. In silico analysis identified only two deleterious heterozygous mutations within an evolutionarily well-conserved region of the sarcomeric genes ACTC1/cardiac actin (c.664G > A/p.Ala222Thr) and TTN/titin (c.33250G > A/p.Glu11084Lys). Further pedigree analysis revealed the father of the index case to carry with the TTN mutation. Surprisingly, the ACTC1 mutation was not harbored by any first-degree family member. Computational 3D modeling of the mutated proteins showed electrostatic and conformational shifts of cardiac actin compared to wild-type version, as well as changes in the stability of the compact/folded states of titin that normally contributes to avoid mechanic damage. In conclusion, our findings suggest a likely pathogenic de novo mutation in ACTC1 in coexpression of a TTN variant as possible causes of an early onset of a severe DCM and premature death. These results may increase the known clinical pathogenic variations that may critically alter the structure of the heart, whose fatality could be prevented when rapidly detected.
Collapse
Affiliation(s)
- Jose G. Acuña-Ochoa
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Norma A. Balderrábano-Saucedo
- Cardiomyopathies and Arrhythmias Research Laboratory/Department, Federico Gómez Children's Hospital of Mexico, Mexico 06720, Mexico
| | - Ana C. Cepeda-Nieto
- Molecular Genomics Laboratory/Department, Faculty of Medicine, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25000, Mexico
| | - Maria Y. Alvarado-Cervantes
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Vianca L. Ibarra-Garcia
- Therapeutic Innovation Program/Division, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Daniel Barr
- Chemistry Department, University of Mary, Bismarck, North Dakota 58504, USA
| | - Matthew J. Gage
- Chemistry Department, University of Massachusetts at Lowell, Lowell, Massachusetts, 01854, USA
| | - Ryan Pfeiffer
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
| | - Dan Hu
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hector Barajas-Martinez
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
- Department of Pharmacology and Physiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Childers MC, Regnier M. Dynamics of the Pre-Powerstroke Myosin Lever Arm and the Effects of Omecamtiv Mecarbil. Int J Mol Sci 2024; 25:10425. [PMID: 39408754 PMCID: PMC11477208 DOI: 10.3390/ijms251910425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The binding of small molecules to sarcomeric myosin can elicit powerful effects on the chemomechanical cycle, making them effective therapeutics in the clinic and research tools at the benchtop. However, these myotropes can have complex effects that act on different phases of the crossbridge cycle and which depend on structural, dynamic, and environmental variables. While small molecule binding sites have been identified crystallographically and their effects on contraction studied extensively, small molecule-induced dynamic changes that link structure-function are less studied. Here, we use molecular dynamics simulations to explore how omecamtiv mecarbil (OM), a cardiac myosin-specific myotrope, alters the coordinated dynamics of the lever arm and the motor domain in the pre-powerstroke state. We show that the lever arm adopts a range of orientations and find that different lever arm orientations are accompanied by changes in the hydrogen bonding patterns near the converter. We find that the binding of OM to myosin reduces the conformational heterogeneity of the lever arm orientation and also adjusts the average lever arm orientation. Finally, we map out the distinct conformations and ligand-protein interactions adopted by OM. These results uncover some structural factors that govern the motor domain-tail orientations and the mechanisms by which OM primes the pre-powerstroke myosin heads.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
5
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mansoori GA, Mahmeed WA, Wani S, Salih BT, Ansari TE, Farook F, Farooq Z, Khair H, Zaręba K, Dhahouri NA, Raj A, Foo RS, Ali BR, Jasmi FA, Akawi N. Introducing and Implementing Genetic Assessment in Cardio-Obstetrics Clinical Practice: Clinical and Genetic Workup of Patients with Cardiomyopathy. Int J Mol Sci 2023; 24:9119. [PMID: 37298070 PMCID: PMC10252198 DOI: 10.3390/ijms24119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiovascular disease (CVD) during pregnancy varies significantly worldwide, influenced by factors such as access to healthcare, delayed diagnosis, causes, and risk factors. Our study sought to explore the spectrum of CVD present in pregnant women in the United Arab Emirates to better understand this population's unique needs and challenges. Central to our study is an emphasis on the importance of implementing a multidisciplinary approach that involves the collaboration of obstetricians, cardiologists, geneticists, and other healthcare professionals to ensure that patients receive comprehensive and coordinated care. This approach can also help identify high-risk patients and implement preventive measures to reduce the occurrence of adverse maternal outcomes. Furthermore, increasing awareness among women about the risk of CVD during pregnancy and obtaining detailed family histories can help in the early identification and management of these conditions. Genetic testing and family screening can also aid in identifying inherited CVD that can be passed down through families. To illustrate the significance of such an approach, we provide a comprehensive analysis of five women's cases from our retrospective study of 800 women. The findings from our study emphasize the importance of addressing maternal cardiac health in pregnancy and the need for targeted interventions and improvements in the existing healthcare system to reduce adverse maternal outcomes.
Collapse
Affiliation(s)
- Ghadeera Al Mansoori
- Department of Cardiology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates;
| | - Wael Al Mahmeed
- Heart, Vascular & Thoracic Institute, Cleveland Clinic, Abu Dhabi 112412, United Arab Emirates;
| | - Saleema Wani
- Department of Obstetrics & Gynecology, Corniche Hospital, Abu Dhabi 3788, United Arab Emirates; (S.W.); (B.T.S.); (T.E.A.); (F.F.)
| | - Bashir Taha Salih
- Department of Obstetrics & Gynecology, Corniche Hospital, Abu Dhabi 3788, United Arab Emirates; (S.W.); (B.T.S.); (T.E.A.); (F.F.)
| | - Tarek El Ansari
- Department of Obstetrics & Gynecology, Corniche Hospital, Abu Dhabi 3788, United Arab Emirates; (S.W.); (B.T.S.); (T.E.A.); (F.F.)
| | - Fathima Farook
- Department of Obstetrics & Gynecology, Corniche Hospital, Abu Dhabi 3788, United Arab Emirates; (S.W.); (B.T.S.); (T.E.A.); (F.F.)
| | - Zenab Farooq
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Howaida Khair
- Department of Obstetrics & Gynecology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (H.K.); (K.Z.)
| | - Kornelia Zaręba
- Department of Obstetrics & Gynecology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (H.K.); (K.Z.)
| | - Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (N.A.D.); (A.R.); (B.R.A.); (F.A.J.)
| | - Anjana Raj
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (N.A.D.); (A.R.); (B.R.A.); (F.A.J.)
| | - Roger S. Foo
- Cardiovascular Research Institute, National University Healthcare Systems, Singapore 117599, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (N.A.D.); (A.R.); (B.R.A.); (F.A.J.)
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (N.A.D.); (A.R.); (B.R.A.); (F.A.J.)
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (N.A.D.); (A.R.); (B.R.A.); (F.A.J.)
- Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Janin A, Perouse de Montclos T, Nguyen K, Consolino E, Nadeau G, Rey G, Bouchot O, Blanchet P, Sabbagh Q, Cazeneuve C, El-Malti R, Morel E, Delinière A, Chevalier P, Millat G. Molecular Diagnosis of Primary Cardiomyopathy in 231 Unrelated Pediatric Cases by Panel-Based Next-Generation Sequencing: A Major Focus on Five Carriers of Biallelic TNNI3 Pathogenic Variants. Mol Diagn Ther 2022; 26:551-560. [PMID: 35838873 DOI: 10.1007/s40291-022-00604-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders associated with significant morbidity and mortality for which substantial evidence for a genetic contribution was previously reported. We present a detailed molecular investigation of a cohort of 231 patients presenting with primary cardiomyopathy below the age of 18 years. METHODS Cases with pediatric cardiomyopathies were analyzed using a next-generation sequencing (NGS) workflow based on a virtual panel including 57 cardiomyopathy-related genes. RESULTS This molecular approach led to the identification of 69 cases (29.9% of the cohort) genotyped as a carrier of at least one pathogenic or likely pathogenic variant. Fourteen patients were carriers of two mutated alleles (homozygous or compound heterozygous) on the same cardiomyopathy-related gene, explaining the severe clinical disease with early-onset cardiomyopathy. Homozygous TNNI3 pathogenic variants were detected for five unrelated neonates (2.2% of the cohort), with four of them carrying the same truncating variant, i.e. p.Arg69Alafs*8. CONCLUSIONS Our study confirmed the importance of genetic testing in pediatric cardiomyopathies. Discovery of novel pathogenic variations is crucial for clinical management of affected families, as a positive genetic result might be used by a prospective parent for prenatal genetic testing or in the process of pre-implantation genetic diagnosis.
Collapse
Affiliation(s)
- Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677, Bron, Cedex, France.,Université de Lyon 1, Lyon, France
| | - Thomas Perouse de Montclos
- Unité médico-chirurgicale des cardiopathies congénitales, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Karine Nguyen
- Département de Génétique, APHM, Hôpital Timone Adultes, Marseille, France
| | - Emilie Consolino
- Département de Génétique, APHM, Hôpital Timone Adultes, Marseille, France
| | - Gwenael Nadeau
- Genetics Department, Metropole Savoie Hospital Center, Chambéry, France
| | - Gaelle Rey
- Genetics Department, Metropole Savoie Hospital Center, Chambéry, France
| | - Océane Bouchot
- Service de Cardiologie, Centre Hospitalier Annecy Genevois, Epagny Metz-Tessy, France
| | - Patricia Blanchet
- Département de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Quentin Sabbagh
- Département de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Cécile Cazeneuve
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677, Bron, Cedex, France.,Université de Lyon 1, Lyon, France
| | - Rajae El-Malti
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677, Bron, Cedex, France.,Université de Lyon 1, Lyon, France
| | - Elodie Morel
- Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Antoine Delinière
- Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Philippe Chevalier
- Service de Rythmologie, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677, Bron, Cedex, France. .,Université de Lyon 1, Lyon, France.
| |
Collapse
|
8
|
Abstract
BACKGROUND Paediatric cardiomyopathy is a progressive, often lethal disorder and the most common cause of heart failure in children. Despite its severe outcomes, the genetic aetiology is still poorly characterised. High-throughput sequencing offers a great opportunity for a better understanding of the genetic causes of cardiomyopathy. AIM The current study aimed to elucidate the genetic background of cardiomyopathy in Egyptian children. METHODS This hospital-based study involved 68 patients; 58 idiopathic primary dilated cardiomyopathy and 10 left ventricular noncompaction cardiomyopathy. Cardiomyopathy-associated genes were investigated using targeted next-generation sequencing. RESULTS Consanguinity was positive in 53 and 70% of dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy patients, respectively. Positive family history of cardiomyopathy was present in 28% of dilated cardiomyopathy and 10% of the left ventricular noncompaction cardiomyopathy patients. In 25 patients, 29 rare variants were detected; 2 likely pathogenic variants in TNNI3 and TTN and 27 variants of uncertain significance explaining 2.9% of patients. CONCLUSIONS The low genetic detection rate suggests that novel genes or variants might underlie paediatric cardiomyopathy in Egypt, especially with the high burden of consanguinity. Being the first national and regional report, our study could be a reference for future genetic testing in Egyptian cardiomyopathy children. Genome-wide tests (whole exome/genome sequencing) might be more suitable than the targeted sequencing to investigate the primary cardiomyopathy patients. Molecular characterisation of cardiomyopathies in different ethnicities will allow for global comparative studies that could result in understanding the pathophysiology and heterogeneity of cardiomyopathies.
Collapse
|
9
|
Li M, Xia S, Xu L, Tan H, Yang J, Wu Z, He X, Li L. Genetic analysis using targeted next-generation sequencing of sporadic Chinese patients with idiopathic dilated cardiomyopathy. J Transl Med 2021; 19:189. [PMID: 33941202 PMCID: PMC8091742 DOI: 10.1186/s12967-021-02832-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Inherited dilated cardiomyopathy (DCM) contributes to approximately 25% of idiopathic DCM cases, and the proportion is even higher in familial DCM patients. Most studies have focused on familial DCM, whereas the genetic profile of sporadic DCM in Chinese patients remains unknown. Methods Between June 2018 and September 2019, 24 patients diagnosed with idiopathic DCM without a family history were included in the present study. All patients underwent genetic screening for 80 DCM-related genes using targeted next-generation sequencing. Results By in silico analysis, 10 of 99 detected variants were considered pathogenic or likely-pathogenic, including seven TTN truncating variants (TTNtv), one in-frame deletion in TNNT2, one missense mutation in RBM20, and one frameshift deletion variant in FLNC. Of these variants, eight are reported for the first time. Conclusions Using targeted next-generation sequencing, potential genetic causes of idiopathic DCM were identified. Sarcomere mutations remained the most common genetic cause of inherited DCM in this cohort of sporadic Chinese DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02832-3.
Collapse
Affiliation(s)
- Mingmin Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junqing Yang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zejia Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Xiao Y, Sun Y, Tian T, Wang TJ, Zhao RX, Zhang Y, Wang LP, Liu YX, Lu CX, Zhou XL, Yang WX. Prevalence and Clinical Characteristics of Fabry Disease in Chinese Patients With Hypertrophic Cardiomyopathy. Am J Med Sci 2021; 362:260-267. [PMID: 34266644 DOI: 10.1016/j.amjms.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The prevalence of Fabry disease (FD) in Chinese patients with hypertrophic cardiomyopathy (HCM) is unclear. We aimed to evaluate the prevalence, clinical characteristics, and outcomes of FD in Chinese patients with HCM. METHODS Of 217 patients with HCM, FD probands were screened by next-generation sequencing at Fuwai Hospital. Medical data from α-galactosidase A activity, electrocardiography, echocardiography, coronary angiography, cardiac magnetic resonance, pathological examination, and follow up was analyzed. RESULTS Two FD probands were observed (0.93% of patients with HCM), both of which were diagnosed with symptomatic obstructive HCM at 49 years of age. One proband had a GLA mutation (c.887T>C [p.M296T]) with a late-onset cardiac variant, which was characterized by dual ventricular hypertrophy and conduction disease with a permanent pacemaker. The other patient had a GLA mutation (c.758T>C [p.I253T]) with a classic phenotype and dual ventricular hypertrophy, atrioventricular block, renal failure, and recurrent cerebral infarction. Both probands had late gadolinium enhancement mainly in the basal segment of the inferolateral wall. Follow up revealed no exertional symptoms or outflow obstruction after surgical septal myectomy in the two probands, and stable renal function was observed after 6 months of migalastat therapy in the later one. A family study revealed six female carriers and three sudden cardiac deaths. CONCLUSIONS FD is not uncommon in Chinese patients with HCM. Multiple organic involvement, dual ventricular hypertrophy, and conduction disease provide clinical clues for suspected FD, and early genetic screening is necessary. Surgical septal myectomy and migalastat improve the long-term prognosis of patients with FD.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Sun
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Jie Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran-Xu Zhao
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Ping Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao-Xia Lu
- McKusick-Zhang Center for Genetic Medicine, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xian-Liang Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei-Xian Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Hua TR, Zhang SY. Cardiomyopathies in China: A 2018-2019 state-of-the-art review. Chronic Dis Transl Med 2020; 6:224-238. [PMID: 33336168 PMCID: PMC7729112 DOI: 10.1016/j.cdtm.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 11/02/2022] Open
Abstract
Cardiomyopathies are diseases of the cardiac muscle and are often characterized by ventricular dilation, hypertrophy, and cardiac arrhythmia. Patients with cardiomyopathies often experience sudden death and cardiac failure and require cardiac transplantation during the course of disease progression. Early diagnosis, differential diagnosis, and genetic consultation depend on imaging techniques, genetic testing, and new emerging diagnostic tools such as serum biomarkers. The molecular genetics of cardiomyopathies has been widely studied recently. The discovery of mechanisms underlying heterogeneity and overlapping of the phenotypes of cardiomyopathies has revealed the existence of disease modifiers, and this has led to the emergence of novel disease-modifying therapy. This 2018-2019 state-of-the-art review outlines the pathogenesis, diagnosis, and treatment of cardiomyopathies in China.
Collapse
Affiliation(s)
- Tian-Rui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
12
|
Abstract
Paediatric cardiomyopathy is a progressive and often lethal disorder and the most common cause of heart failure in children. Despite their severe outcomes, their genetic etiology is still poorly characterised. The current study aimed at uncovering the genetic background of idiopathic primary hypertrophic cardiomyopathy in a cohort of Egyptian children using targeted next-generation sequencing. The study included 24 patients (15 males and 9 females) presented to the cardiomyopathy clinic of Cairo University Children's Hospital with a median age of 2.75 (0.5-14) years. Consanguinity was positive in 62.5% of patients. A family history of hypertrophic cardiomyopathy was present in 20.8% of patients. Ten rare variants were detected in eight patients; two pathogenic variants (8.3%) in MBPC3 and MYH7, and eight variants of uncertain significance in MYBPC3, TTN, VCL, MYL2, CSRP3, and RBM20.Here, we report on the first national study in Egypt that analysed sarcomeric and non-sarcomeric variants in a cohort of idiopathic paediatric hypertrophic cardiomyopathy patients using next-generation sequencing. The current pilot study suggests that paediatric hypertrophic cardiomyopathy in Egypt might have a particular genetic background, especially with the high burden of consanguinity. Including the genetic testing in the routine diagnostic service is important for a better understanding of the pathophysiology of the disease, proper patient management, and at-risk detection. Genome-wide tests (whole exome/genome sequencing) might be better than the targeted sequencing approach to test primary hypertrophic cardiomyopathy patients in addition to its ability for the identification of novel genetic causes.
Collapse
|
13
|
A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. J Muscle Res Cell Motil 2020; 42:323-342. [PMID: 33179204 DOI: 10.1007/s10974-020-09592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.
Collapse
|
14
|
Barretta F, Mirra B, Monda E, Caiazza M, Lombardo B, Tinto N, Scudiero O, Frisso G, Mazzaccara C. The Hidden Fragility in the Heart of the Athletes: A Review of Genetic Biomarkers. Int J Mol Sci 2020; 21:E6682. [PMID: 32932687 PMCID: PMC7555257 DOI: 10.3390/ijms21186682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Sudden cardiac death (SCD) is a devastating event which can also affect people in apparent good health, such as young athletes. It is known that intense and continuous exercise along with a genetic background that predisposes a person to the risk of fatal arrhythmias is a trigger for SCD. Therefore, knowledge of the athlete's genetic conditions underlying the onset of SCD must be extended, in order to develop new effective prevention and/or therapeutic strategies. Arrhythmic features occur across a broad spectrum of cardiac diseases, sometimes presenting with overlapping phenotypes. The genetic basis of arrhythmogenic disorders has been greatly highlighted in the last 30 years, and has shown marked heterogeneity. The advent of next-generation sequencing has constantly updated our understanding of the genetic basis of arrhythmogenic diseases and is laying the foundation for precision medicine. With the exception of a few clinical cases involving a single athlete showing a highly suspected phenotype for the presence of a heart disease, there are few studies to date that analysed the applicability of genetic testing on cohorts of athletes. This evidence shows that genetic testing can contribute to the diagnosis of up to 13% of athletes; however, the presence of clinical markers is essential. This review aims to provide a reference collection on current knowledge of the genetic basis of sudden cardiac death in athletes and to review updated evidence on the effectiveness of genetic testing in early identification of athletes at risk for SCD.
Collapse
Affiliation(s)
- Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Bruno Mirra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (M.C.)
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (M.C.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.B.); (B.M.); (B.L.); (N.T.); (O.S.); (C.M.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| |
Collapse
|
15
|
Hawley MH, Almontashiri N, Biesecker LG, Berger N, Chung WK, Garcia J, Grebe TA, Kelly MA, Lebo MS, Macaya D, Mei H, Platt J, Richard G, Ryan A, Thomson KL, Vatta M, Walsh R, Ware JS, Wheeler M, Zouk H, Mason-Suares H, Funke B. An assessment of the role of vinculin loss of function variants in inherited cardiomyopathy. Hum Mutat 2020; 41:1577-1587. [PMID: 32516855 DOI: 10.1002/humu.24061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/05/2022]
Abstract
The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.
Collapse
Affiliation(s)
- Megan H Hawley
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Naif Almontashiri
- Faculty of Applied Medical Sciences, Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalie Berger
- Department of Maternal Fetal Medicine, SSM Health St Mary's Hospital, Madison, Wisconsin
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York
| | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Matthew S Lebo
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | | | - Hui Mei
- GeneDx, Inc, Gaithersburg, Maryland
| | - Julia Platt
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Ashley Ryan
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherland
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, UK
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Birgit Funke
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| |
Collapse
|
16
|
Zech ATL, Singh SR, Schlossarek S, Carrier L. Autophagy in cardiomyopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118432. [PMID: 30831130 DOI: 10.1016/j.bbamcr.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
Autophagy (greek auto: self; phagein: eating) is a highly conserved process within eukaryotes that degrades long-lived proteins and organelles within lysosomes. Its accurate and constant operation in basal conditions ensures cellular homeostasis by degrading damaged cellular components and thereby acting not only as a quality control but as well as an energy supplier. An increasing body of evidence indicates a major role of autophagy in the regulation of cardiac homeostasis and function. In this review, we describe the different forms of mammalian autophagy, their regulations and monitoring with a specific emphasis on the heart. Furthermore, we address the role of autophagy in several forms of cardiomyopathy and the options for therapy.
Collapse
Affiliation(s)
- Antonia T L Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sonia R Singh
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|