1
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
3
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Heparin: An old drug for new clinical applications. Carbohydr Polym 2022; 295:119818. [DOI: 10.1016/j.carbpol.2022.119818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
|
5
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|
6
|
Improvement of Bronchial Immune Hypersensitivity Reaction Using Extracts from Chrysanthemum morifolium Ramatuelle and Scutellaria baicalensis Georgi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3173823. [PMID: 34931126 PMCID: PMC8684525 DOI: 10.1155/2021/3173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Chrysanthemum morifolium Ramatuelle and Scutellaria baicalensis Georgi (skullcap) have been used as safe raw materials for drinking or as traditional medicines in Korea. In this study, we investigated the potential therapeutic effects of ovalbumin-induced asthma in a mouse model. After establishing the model, mice were treated with a mixture of chrysanthemum and skullcap extracts at different mixing ratios (6 : 4, 7 : 3, and 8 : 2). Immune cell counts and the production of various inflammatory cytokines were measured using biochemical tests. Among the mixtures tested, the 7 : 3 ratio (CS73) showed the most pronounced effects. CS73 significantly reduced the levels of the inflammatory cytokines interleukin- (IL-) 1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-17F, and IL-17E in the serum and bronchoalveolar lavage fluid of asthmatic mice. In addition, CS73 treatment significantly increased the production of IL-2 and interferon-γ and decreased the production of immunoglobulin E, histamine, and thymic stromal lymphopoietin in asthmatic mice compared to the control group. Our results suggest that the combination of chrysanthemum and skullcap extracts, especially at a 7 : 3 ratio, can be used to improve bronchial health and contribute to improved public health.
Collapse
|
7
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Allergic asthma reflects the interplay between inflammatory mediators and immune, airway epithelial, and other cells. This review summarizes key insights in these areas over the past year. RECENT FINDINGS Key findings over the past year demonstrate that epithelial cells mediate tight junction breakdown to facilitate the development of asthma-like disease in mice. Innate lymph lymphoid cells (ILC), while previously shown to promote allergic airway disease, have now been shown to inhibit the development of severe allergic disease in mice. Fibrinogen cleavage products (previously shown to mediate allergic airway disease and macrophage fungistatic immunity by signaling through Toll-like receptor 4) have now been shown to first bind to the integrin Mac-1 (CD11c/CD18). Therapeutically, recent discoveries include the development of the antiasthma drug PM-43I that inhibits the allergy-related transcription factors STAT5 and STAT6 in mice, and confirmatory evidence of the efficacy of the antifungal agent voriconazole in human asthma. SUMMARY Studies over the past year provide critical new insight into the mechanisms by which epithelial cells, ILC, and coagulation factors contribute to the expression of asthma-like disease and further support the development antiasthma drugs that block STAT factors and inhibit fungal growth in the airways.
Collapse
|
9
|
Cui J, Xu H, Yu J, Li Y, Chen Z, Zou Y, Zhang X, Du Y, Xia J, Wu J. IL-4 inhibits regulatory T cells differentiation by HDAC9-mediated epigenetic regulation. Cell Death Dis 2021; 12:501. [PMID: 34006836 PMCID: PMC8131756 DOI: 10.1038/s41419-021-03769-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Regulatory T cells play a crucial role in orchestrating immune response and maintaining immune tolerance, and the expression of the Foxp3 gene is indispensable to the differentiation of regulatory T cells. IL-4 shows strong inhibitory effects on Foxp3 expression and regulatory T cells differentiation, but the detailed mechanisms are still unclear. Here, we revealed that epigenetic modulations are key to this process. Specifically, the inhibition was found to be STAT6 dependent, and HDAC9 was involved with the process of histone deacetylation at the Foxp3 locus, subsequently decreasing chromatin accessibility and Foxp3 gene transcription. Pan-histone deacetylation inhibitors, especially sodium butyrate, notably abolished the inhibitory effects of IL-4 and ameliorated allergic airway inflammation in mouse models. Our research provides important mechanistic insights into how IL-4 inhibits regulatory T cells differentiation and suggests the therapeutic potential of the sodium butyrate in allergic airway disease.
Collapse
Affiliation(s)
- Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Abdulmalik O, Darwish NHE, Muralidharan-Chari V, Taleb MA, Mousa SA. Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia. Haematologica 2021; 107:532-540. [PMID: 33567814 PMCID: PMC8804574 DOI: 10.3324/haematol.2020.272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness of the cells, thereby altering the rheological properties of the blood, and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crises. Unfractionated heparin and low-molecular weight heparins have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated non-anticoagulant heparin derivative (S-NACH) was previously reported to have no to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectin-dependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to inhibit sickling directly, thus employing a multimodal approach. Here, we show that S-NACH can: (i) directly engage in Schiff-base reactions with HbS to decrease red blood cell sickling under both normoxia and hypoxia in vitro, (ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and anti-inflammatory cytokines. Thus, our proof-of-concept, in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to low-molecular weight heparins for the treatment of patients with SCD.
Collapse
Affiliation(s)
- Osheiza Abdulmalik
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Clinical Pathology (Hematology Section), Faculty of Medicine, Mansoura University, Mansoura
| | | | - Maii Abu Taleb
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Vascular Vison Pharmaceuticals Co., 7 University Place, Rensselaer, NY.
| |
Collapse
|
11
|
Voynow JA, Zheng S, Kummarapurugu AB. Glycosaminoglycans as Multifunctional Anti-Elastase and Anti-Inflammatory Drugs in Cystic Fibrosis Lung Disease. Front Pharmacol 2020; 11:1011. [PMID: 32733248 PMCID: PMC7360816 DOI: 10.3389/fphar.2020.01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neutrophil elastase (NE) is a major protease in the airways of patients with cystic fibrosis (CF) that activates airway inflammation by several mechanisms. NE stimulates epithelial toll like receptors (TLR) resulting in cytokine upregulation and release, upregulates MUC5AC, a major airway mucin, degrades both phagocytic receptors and opsonins resulting in both neutrophil and macrophage phagocytic failure, generates oxidative stress via extracellular generation and uptake of heme free iron, and activates other proteases. Altogether, these mechanisms create a significant inflammatory challenge that impairs innate immune function and results in airway remodeling. Currently, a major gap in our therapeutic approach to CF lung disease is the lack of an effective therapeutic strategy targeting active NE and its downstream pro-inflammatory sequelae. Polysulfated glycosaminoglycans (GAGs) are potent anti-elastase drugs that have additional anti-inflammatory properties. Heparin is a prototype of a glycosaminoglycan with both anti-elastase and anti-inflammatory properties. Heparin inhibits NE in an allosteric manner with high potency. Heparin also inhibits cathepsin G, blocks P-selectin and L-selectin, hinders ligand binding to the receptor for advanced glycation endproducts, and impedes histone acetyltransferase activity which dampens cytokine transcription and High Mobility Group Box 1 release. Furthermore, nebulized heparin treatment improves outcomes for patients with chronic obstructive pulmonary disease (COPD), asthma, acute lung injury and smoke inhalation. However, the anticoagulant activity of heparin is a potential contraindication for this therapy to be developed for CF lung disease. Therefore, modified heparins and other GAGs are being developed that retain the anti-elastase and anti-inflammatory qualities of heparin with minimal to no anticoagulant activity. The modified heparin, 2-O, 3-O desulfated heparin (ODSH), maintains anti-elastase and anti-inflammatory activities in vitro and in vivo, and has little residual anticoagulant activity. Heparan sulfate with O-sulfate residues but not N-sulfate residues blocks allergic asthmatic inflammation in a murine model. Polysulfated hyaluronic acid abrogates allergen- triggered rhinosinusitis in a murine model. Finally, nonsaccharide glycosaminoglycan mimetics with specific sulfate modifications can be designed to inhibit NE activity. Altogether, these novel GAGs or GAG mimetics hold significant promise to address the unmet need for inhaled anti-elastase and anti-inflammatory therapy for patients with CF.
Collapse
Affiliation(s)
- Judith A Voynow
- Department of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, VA, United States
| | - Shuo Zheng
- Department of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, VA, United States
| | - Apparao B Kummarapurugu
- Department of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, VA, United States
| |
Collapse
|
12
|
Prakash AV, Park JW, Seong JW, Kang TJ. Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis. Biomol Ther (Seoul) 2020; 28:222-229. [PMID: 32133828 PMCID: PMC7216745 DOI: 10.4062/biomolther.2020.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- Annamneedi Venkata Prakash
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jun Woo Park
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
13
|
Mulloy B. The non-anticoagulant promise of heparin and its mimetics. Curr Opin Pharmacol 2019; 46:50-54. [PMID: 31009826 DOI: 10.1016/j.coph.2019.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Heparin, the widely used anticoagulant and antithrombotic polysaccharide, has other potential therapeutic uses that arise from its similarity to heparan sulfate. This review provides a brief overview of the most recent developments in this field, paying particular respect to pulmonary and respiratory pharmacology. It has often been said that heparin, with its mimetics and derivatives, shows great promise in the treatment of inflammatory, infectious, and malignant conditions. Difficulties are encountered, however, in translating this promise into worthwhile treatment strategies for patients in some conditions. Several clinical trials of low molecular weight heparins as adjuvant therapy to standard treatment of lung cancers have recently provided no evidence to support the supposed beneficial effects of low molecular weight heparin.
Collapse
Affiliation(s)
- Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|