1
|
Seetharaman R. The implications of waiving local clinical trials for drugs in India: a double-edged sword? THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 31:100501. [PMID: 39469505 PMCID: PMC11513631 DOI: 10.1016/j.lansea.2024.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Rajmohan Seetharaman
- Department of Pharmacology, MGM Medical College & Hospital, MGM Institute of Health Sciences (MGMIHS), Nerul, Navi Mumbai, 400706, India
| |
Collapse
|
2
|
Neves-Zaph S, Kaddi C. Quantitative Systems Pharmacology Models: Potential Tools for Advancing Drug Development for Rare Diseases. Clin Pharmacol Ther 2024; 116:1442-1451. [PMID: 39340225 DOI: 10.1002/cpt.3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Rare diseases, affecting millions globally, present significant drug development challenges. This is due to the limited patient populations and the unique pathophysiology of these diseases, which can make traditional clinical trial designs unfeasible. Quantitative Systems Pharmacology (QSP) models offer a promising approach to expedite drug development, particularly in rare diseases. QSP models provide a mechanistic representation of the disease and drug response in virtual patients that can complement routinely applied empirical modeling and simulation approaches. QSP models can generate digital twins of actual patients and mechanistically simulate the disease progression of rare diseases, accounting for phenotypic heterogeneity. QSP models can also support drug development in various drug modalities, such as gene therapy. Impactful QSP models case studies are presented here to illustrate their value in supporting various aspects of drug development in rare indications. As these QSP model applications continue to mature, there is a growing possibility that they could be more widely integrated into routine drug development steps. This integration could provide a robust framework for addressing some of the inherent challenges in rare disease drug development.
Collapse
Affiliation(s)
- Susana Neves-Zaph
- Translational Disease Modeling, Translational Medicine and Early Development, Sanofi US, Bridgewater, New Jersey, USA
| | - Chanchala Kaddi
- Translational Disease Modeling, Translational Medicine and Early Development, Sanofi US, Bridgewater, New Jersey, USA
| |
Collapse
|
3
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024; 8:1523-1539. [PMID: 39237709 PMCID: PMC11852397 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Arjmand B, Alavi-Moghadam S, Khorsand G, Sarvari M, Arjmand R, Rezaei-Tavirani M, Rajaeinejad M, Mosaed R. Cell-Based Vaccines: Frontiers in Medical Technology for Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:480-499. [DOI: 10.1007/s40883-024-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025]
|
5
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
7
|
Xu S, Wang Q, Ma W. Cytokines and soluble mediators as architects of tumor microenvironment reprogramming in cancer therapy. Cytokine Growth Factor Rev 2024; 76:12-21. [PMID: 38431507 DOI: 10.1016/j.cytogfr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Navigating the intricate landscape of the tumor microenvironment (TME) unveils a pivotal arena for cancer therapeutics, where cytokines and soluble mediators emerge as double-edged swords in the fight against cancer. This review ventures beyond traditional perspectives, illuminating the nuanced interplay of these elements as both allies and adversaries in cancer dynamics. It critically evaluates the evolving paradigms of TME reprogramming, spotlighting innovative strategies that target the sophisticated network of cytokines and mediators. Special focus is placed on unveiling the therapeutic potential of novel cytokines and mediators, particularly their synergistic interactions with extracellular vesicles, which represent underexplored conduits for therapeutic targeting. Addressing a significant gap in current research, we explore the untapped potential of these biochemical players in orchestrating immune responses, tumor proliferation, and metastasis. The review advocates for a paradigm shift towards exploiting these dynamic interactions within the TME, aiming to transcend conventional treatments and pave the way for a new era of precision oncology. Through a critical synthesis of recent advancements, we highlight the imperative for innovative approaches that harness the full spectrum of cytokine and mediator activities, setting the stage for breakthrough therapies that offer heightened specificity, reduced toxicity, and improved patient outcomes.
Collapse
Affiliation(s)
- Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Farrar MA, Calotes-Castillo L, De Silva R, Barclay P, Attwood L, Cini J, Ferrie M, Kariyawasam DS. Gene therapy-based strategies for spinal muscular atrophy-an Asia-Pacific perspective. Mol Cell Pediatr 2023; 10:17. [PMID: 37964159 PMCID: PMC10645685 DOI: 10.1186/s40348-023-00171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
Onasemnogene abeparvovec has been life-changing for children with spinal muscular atrophy (SMA), signifying the potential and progress occurring in gene- and cell-based therapies for rare genetic diseases. Hence, it is important that clinicians gain knowledge and understanding in gene therapy-based treatment strategies for SMA. In this review, we describe the development and translation of onasemnogene abeparvovec from clinical trials to healthcare practice and share knowledge on the facilitators and barriers to implementation. Rapid and accurate SMA diagnosis, awareness, and education to safely deliver gene therapy to eligible patients and access to expertise in multidisciplinary management for neuromuscular disorders are crucial for health system readiness. Early engagement and intersectoral collaboration are required to surmount complex logistical processes and develop policy, governance, and accountability. The collection and utilisation of real-world evidence are also an important part of clinical stewardship, informing ongoing improvements to care delivery and access. Additionally, a research-enabled clinical ecosystem can expand scientific knowledge and discovery to optimise future therapies and magnify health impacts. Important ethical, equity, economic, and sustainability issues are evident, for which we must connect globally.
Collapse
Affiliation(s)
- Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia.
- Discipline of Paediatrics and Child Health, UNSW Medicine and Health, School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Loudella Calotes-Castillo
- Division of Paediatric Neurology, Department of Paediatrics and Neurosciences, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Ranil De Silva
- Faculty of Medical Sciences, Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience (ICIBN), University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Peter Barclay
- Pharmacy Department, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Lani Attwood
- Kids Advanced Therapeutics Programme, Sydney Children's Hospitals Network, Kids Research, Sydney, New South Wales, Australia
| | - Julie Cini
- Advocacy Beyond Borders, Melbourne, Australia
| | | | - Didu S Kariyawasam
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, UNSW Medicine and Health, School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Buedo P, Bianchini A, Klas K, Waligora M. Bioethics of somatic gene therapy: what do we know so far? Curr Med Res Opin 2023; 39:1355-1365. [PMID: 37772315 PMCID: PMC11780552 DOI: 10.1080/03007995.2023.2257600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE To provide a systematic overview of bioethical debate on somatic gene therapy as documented in the scientific literature. METHODS We performed a systematic review of reasons, following Strech and Sofaer approach, which is a method to systematically identify and classify arguments (reasons) used in the scientific literature. We identified 217 eligible publications retrieved from PubMed, Lilacs, PhilPapers, and Google Scholar. A meta-synthesis was performed to analyze the data. RESULTS We extracted 189 arguments. Arguments were grouped into 23 categories. Twelve categories were classified as research-related, including the risk/benefit ratio, priorities and limits, informed consent, review, and monitoring. Eleven were classified as society-related, including population impact, human identity, public perception, human health. CONCLUSION Our study provides a database of existing challenges and arguments of somatic gene therapy and may serve as the basis of normative analysis. By presenting collected arguments, we contribute to the discussion about the ethics and social dimensions of somatic gene therapy.
Collapse
Affiliation(s)
- Paola Buedo
- Research Ethics in Medicine Study Group (REMEDY), Jagiellonian University Medical College, Krakow, Poland
| | - Alahi Bianchini
- Instituto de Investigaciones Jurídicas y Sociales Ambrosio Lucas Gioja, Universidad de Buenos Aires, Buenos Aires, Argentina - Programa de Bioética, FLACSO Argentina, Buenos Aires, Argentina
| | - Katarzyna Klas
- Research Ethics in Medicine Study Group (REMEDY), Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Waligora
- Research Ethics in Medicine Study Group (REMEDY), Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Timpka T, Nyce JM. Professional ethics for infectious disease control: moral conflict management in modern public health practice. Public Health 2023; 221:160-165. [PMID: 37463550 DOI: 10.1016/j.puhe.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES Despite scientific evidence that confirms their effectiveness, use of vaccines and microbiological mass testing during the COVID-19 pandemic has been associated with social and moral controversies. In this commentary, it is suggested how such conflicts originating from moral/normative imperatives can be managed in infectious disease control. STUDY DESIGN This was a commentary analysis. METHODS A case example of scientific and public debate regarding infectious disease control and policy-making during the early pandemic response is first presented. The case is used to characterize how conflicts arising from moral constraints occurred during the COVID-19 pandemic. These features are thereafter used as a basis for outlining a strategy for moral conflict prevention and management. RESULTS A challenge for infectious disease control throughout the pandemic was how to manage persuasive initiatives originating from social forces competing with science for influence. Purposively maneuvered information distributed through social media and internet websites could predispose population factions to contest legitimate (evidence and legally based) pandemic response measures. During the pandemic, fact-based criticism of professionals responsible for infectious disease control was mixed with a critique of their moral standards and intentions so as to diminish effectiveness and credibility. Such blending could be curtailed if infectious disease control professionals are made accountable for public health decisions made in the light of prevalent scientific evidence and legislation. CONCLUSIONS If the infectious disease control community would embrace the international code of medical professional ethics, this would help to deal with moral conflicts, especially ones arising from external threats, in modern public health.
Collapse
Affiliation(s)
- Toomas Timpka
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden; Department of Computer and Information Science, Linköping University, Linköping, Sweden.
| | - James M Nyce
- Department of Computer and Information Science, Linköping University, Linköping, Sweden; Department of Anthropology, Ball State University, Muncie, IN, USA
| |
Collapse
|
11
|
Alhawaj AF. Stem cell-based therapy for hirschsprung disease, do we have the guts to treat? Gene Ther 2022; 29:578-587. [PMID: 34121091 PMCID: PMC9684071 DOI: 10.1038/s41434-021-00268-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital anomaly of the colon that results from failure of enteric nervous system formation, leading to a constricted dysfunctional segment of the colon with variable lengths, and necessitating surgical intervention. The underlying pathophysiology includes a defect in neural crest cells migration, proliferation and differentiation, which are partially explained by identified genetic and epigenetic alterations. Despite the high success rate of the curative surgeries, they are associated with significant adverse outcomes such as enterocolitis, fecal soiling, and chronic constipation. In addition, some patients suffer from extensive lethal variants of the disease, all of which justify the need for an alternative cure. During the last 5 years, there has been considerable progress in HSCR stem cell-based therapy research. However, many major issues remain unsolved. This review will provide concise background information on HSCR, outline the future approaches of stem cell-based HSCR therapy, review recent key publications, discuss technical and ethical challenges the field faces prior to clinical translation, and tackle such challenges by proposing solutions and evaluating existing approaches to progress further.
Collapse
Affiliation(s)
- Ali Fouad Alhawaj
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom.
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
12
|
Medical student acceptance on gene therapy to increase children's well-being with genetic diseases: a study in Indonesia. Future Sci OA 2022; 8:FSO800. [PMID: 35909997 PMCID: PMC9327639 DOI: 10.2144/fsoa-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: Gene therapy is expected to improve patients' quality of life. Medical students need to be aware about this technology as its application is becoming wider. Materials & methods: A web-based survey was conducted to measure the acceptance of Indonesian medical students regarding gene therapy. Results: Data from 621 valid responses showed that Indonesian medical students have little knowledge of this technology, with 34.4% of them ever heard of gene therapy. However, most of them support the approved gene therapy for health-related matters, but not on the non-health related matters. Their acceptance was determined by the sex, domicile and studentship status. Conclusion: Increasing medical students' knowledge of gene therapy is important to minimize the future conflict of gene therapy application.
Collapse
|
13
|
Orozco-Solares TE, León-Moreno LC, Rojas-Rizo A, Manguart-Paez K, Caplan AI. Allogeneic Mesenchymal Stem Cell-based treatments legislation in Latin America: The need for standardization in a medical tourism context. Stem Cells Dev 2022; 31:143-162. [PMID: 35216516 DOI: 10.1089/scd.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Medicinal Signaling Cells (MSCs) secrete bioactive molecules with paracrine effects. These cells are widely used in basic and clinical research to treat several human diseases and medically relevant conditions. Although there are promising results, only a few treatments are approved of its administration, and clinicians should not underestimate the potential risks of its application without proper authorization. However, some treatments advertised mainly through the internet are not supported by solid or rigorous scientific evidence, legal consent, or the assurance of safety and efficacy, especially in the cell therapy tourism space. This practice allows patients to travel from stringently regulated countries to less restricted ones and increases the flourishing of non-endorsed therapies in these regions. Clinical applications of MSC-based treatments are subject to health legislation, and regulatory agencies are responsible for supervising their manufacture, quality control, and marketing approval. Consensus is needed to homologize and strengthen health legislation regarding those therapies, particularly in regions where medical tourism is frequent. Latin America and the Caribbean, an overlooked region with very heterogeneous legislation regarding cell therapy, is a popular medical tourism destination. Brazil and Argentina created regulations to supervise cell-based treatments manufacture, quality, and marketing. While Mexico, considered the second-largest drug market in Latin America, does not recognize nor authorize any cells as therapy. Also, some regulatory bodies miss the importance of several critical GMP processes to ensure reproducible, reliable, safe, and potentially more favorable results and do not consider them in their legislation. These inconsistencies make the region vulnerable to unproven or unethical treatments, potentially becoming a public health problem involving people from countries worldwide. This review attempts to generate awareness for the legal status of cell therapies in Latin America and the need for standardization as this region is a significant medical tourism destination.
Collapse
Affiliation(s)
| | - Lilia Carolina León-Moreno
- Universidad de Guadalajara, 27802, Guadalajara, Jalisco, Mexico.,Provida Salud Integral, Research and Development, Guadalajara, Jalisco, Mexico;
| | - Andrea Rojas-Rizo
- Provida Salud Integral, Mesenchymal Stem Cell Bank, Guadalajara, Jalisco, Mexico;
| | - Karen Manguart-Paez
- Provida Salud Integral, Mesenchymal Stem Cell Bank, Guadalajara, Jalisco, Mexico;
| | - Arnold I Caplan
- Case Western Reserve University, 2546, Department of Biology, Cleveland, Ohio, United States;
| |
Collapse
|
14
|
Qiu T, Pochopien M, Liang S, Saal G, Paterak E, Janik J, Toumi M. Gene Therapy Evidence Generation and Economic Analysis: Pragmatic Considerations to Facilitate Fit-for-Purpose Health Technology Assessment. Front Public Health 2022; 10:773629. [PMID: 35223725 PMCID: PMC8863657 DOI: 10.3389/fpubh.2022.773629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Gene therapies (GTs) are considered to be a paradigm-shifting class of treatments with the potential to treat previously incurable diseases or those with significant unmet treatment needs. However, considerable challenges remain in their health technology assessment (HTA), mainly stemming from the inability to perform robust clinical trials to convince decision-makers to pay the high prices for the potential long-term treatment benefits provided. This article aims to review the recommendations that have been published for evidence generation and economic analysis for GTs against the feasibility of their implementation within current HTA decision analysis frameworks. After reviewing the systematically identified literature, we found that questions remain on the appropriateness of GT evidence generation, considering that additional, broader values brought by GTs seem insufficiently incorporated within proposed analytic methods. In cases where innovative methods are proposed, HTA organizations remain highly conservative and resistant to change their reference case and decision analysis framework. Such resistances are largely attributed to the substantial evidence uncertainty, resource-consuming administration process, and the absence of consensus on the optimized methodology to balance all the advantages and potential pitfalls of GTs.
Collapse
Affiliation(s)
- Tingting Qiu
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| | - Michal Pochopien
- Department of Health Economics and Outcomes Research, Creativ-Ceutical, Warsaw, Poland
| | - Shuyao Liang
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| | - Gauri Saal
- Department of Health Economics and Outcomes Research, Apothecom, London, United Kingdom
| | - Ewelina Paterak
- Department of Health Economics and Outcomes Research, Creativ-Ceutical, Warsaw, Poland
| | - Justyna Janik
- Department of Health Economics and Outcomes Research, Creativ-Ceutical, Warsaw, Poland
| | - Mondher Toumi
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
15
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
16
|
Halpern J, O'Hara SE, Owen AL, Paolo D. How Scientists Perceive CRISPR's Translational Promise and the Implications for Individuals with Genetic Conditions. Ethics Hum Res 2021; 43:28-41. [PMID: 34751516 DOI: 10.1002/eahr.500108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) somatic genome editing, an important promissory technology, presents a case study of the movement of basic scientists into translational research. In this paper, we explore how scientists experience the pulls of CRISPR's power and the pushes of economic and societal pressures in adopting new translational roles. Given basic scientists' emerging contact with and influence upon individuals with genetic conditions, we also examine how scientists understand the perspectives of affected populations, both as potential subjects of early experiments and as the patients who could receive future treatments. Finally, we consider the ethical implications of our findings and call for innovative approaches to translational research that help scientists engage with people with genetic conditions in early translational research.
Collapse
Affiliation(s)
- Jodi Halpern
- Professor of bioethics and medical humanities, the Class of 1940 Chancellor's Chair, and the cofounder and codirector of the Berkeley Group for the Ethics and Regulation of Innovative Technologies at the School of Public Health and UCB-UCSF Joint Medical Program at the University of California, Berkeley
| | - Sharon E O'Hara
- Lecturer and postdoctoral scholar at the University of California, Berkeley, in the School of Public Health
| | - Aleksa L Owen
- Postdoctoral scholar at the University of California, Berkeley, in the School of Public Health
| | - David Paolo
- Researcher at the University of California, Berkeley, in the School of Public Health
| |
Collapse
|
17
|
Atifeh SM, Davey K, Sadeghi H, Darvizeh R, Darvizeh A. Organic and inorganic equivalent models for analysis of red blood cell mechanical behaviour. J Mech Behav Biomed Mater 2021; 124:104868. [PMID: 34624833 DOI: 10.1016/j.jmbbm.2021.104868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Experimental investigation into the mechanical response of red blood cells is presently impeded with the main impediments being the micro dimensions involved and ethical issues associated with in vivo testing. The widely employed alternative approach of computational modelling suffers from its own inherent limitations being reliant on precise constitutive and boundary information. Moreover, and somewhat critically, numerical computational models themselves are required to be validated by means of experimentation and hence suffer similar impediments. An alternative experimental approach is examined in this paper involving large-scale equivalent models manufactured principally from inorganic, and to lesser extent organic, materials. Although there presently exists no known method providing the means to investigate the mechanical response of red blood cells using scaled models simultaneously having different dimensions and materials, the present paper aims to develop a scaled framework based on the new finite-similitude theory that has appeared in the recent open literature. Computational models are employed to test the effectiveness of the proposed method, which in principle can provide experimental solution methods to a wide range of practical applications including the design of red-blood cell nanorobots and drug delivery systems. By means of experimentally validated numerical experiments under impact loading it is revealed that although exact prediction is not achieved good accuracy can nevertheless be obtained. Furthermore, it is demonstrated how the proposed approach for first time provides a means to relate models at different scales founded on different constitutive equations.
Collapse
Affiliation(s)
- Seid Mohammad Atifeh
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
| | - Keith Davey
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, UK
| | - Hamed Sadeghi
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
| | - Rooholamin Darvizeh
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, UK.
| | - Abolfazl Darvizeh
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
| |
Collapse
|
18
|
Cargill SS, Eidsvik A, Lamm M. Updating the ethical guidance for gene and cell therapy research participation. Mol Ther 2021; 29:2394-2395. [PMID: 34297921 DOI: 10.1016/j.ymthe.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Stephanie Solomon Cargill
- Center for Health Care Ethics, Saint Louis University, St. Louis, MO, USA; Chair of Castle IRB, Wildwood, MO, USA.
| | - Andrea Eidsvik
- Center for Health Care Ethics, Saint Louis University, St. Louis, MO, USA
| | - Marilyn Lamm
- Institutional Biosafety Committee (IBC), Clinical Biosafety Services, Wildwood, MO, USA
| |
Collapse
|
19
|
Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, Dong T, Dustin ML, Hu Z, McGranahan N, Miller ML, Santana-Gonzalez L, Seymour LW, Shi T, Van Loo P, Yau C, White H, Wietek N, Church DN, Wedge DC, Ahmed AA. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer 2021; 124:1759-1776. [PMID: 33782566 PMCID: PMC8144577 DOI: 10.1038/s41416-021-01353-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.
Collapse
Affiliation(s)
- Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ashwag Albukhari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James D Brenton
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart M Curbishley
- Advanced Therapies Facility and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Tao Dong
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Martin L Miller
- Cancer System Biology Group, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Laura Santana-Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Leonard W Seymour
- Gene Therapy Group, Department of Oncology, University of Oxford, Oxford, UK
| | - Tingyan Shi
- Department of Gynecological Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- The Alan Turing Institute, London, UK
| | - Helen White
- Patient Representative, Endometrial Cancer Genomics England Clinical Interpretation Partnership (GeCIP) Domain, London, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - David C Wedge
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Pimenta C, Bettiol V, Alencar-Silva T, Franco OL, Pogue R, Carvalho JL, Felipe MSS. Advanced Therapies and Regulatory Framework in Different Areas of the Globe: Past, Present, and Future. Clin Ther 2021; 43:e103-e138. [PMID: 33892966 DOI: 10.1016/j.clinthera.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The field of human medicine is in a constant state of evolution, developing and incorporating technological advances from diverse scientific fields. In recent years, cellular and gene therapies have come of age, challenging regulatory agencies to define the path for commercial registration. Approval necessarily demands robust evidence for safety and efficacy, but these exigencies must not be such that they render unviable the development and testing of the therapeutic agent. Furthermore, reimbursement strategies are required to guarantee commercial viability of these products, to avoid the risk that they will be removed from the market or become unavailable to most patients through lack of financial resources. To address such challenges, several countries have created strategies to manage advanced therapy products. METHODS Based on official documents published by regulatory agencies worldwide, this review summarizes the current scenario in the United States, Europe, Brazil, Japan, South Korea, and China in this regard, discussing the harmonized and dissonant aspects of the regulatory framework in different regions of the world and exploring perspectives for the future. FINDINGS The technical aspects of advanced therapies are increasingly complex, bringing challenges for high mass commercialization and demanding specific regulation. The regulatory framework of the analyzed regions is mainly recent and discordant, but many harmonizing initiatives were observed. IMPLICATIONS The comparative analysis of regulatory frameworks in different parts of the world is informative, as scientists must be aware of the rationale of regulators to assertively develop new technology and products that will be commercialized. The comparative analysis also provides insight into the main dissonances that must be addressed, fostering the harmonization of local regulatory frameworks. Many unanswered questions still lie ahead for the field of advanced therapies, and empirical evidence will be the most effective way to separate hype from hope and to establish the most sustainable mechanisms to regulate and finance such products in each part of the world.
Collapse
Affiliation(s)
- Cleila Pimenta
- Public Health Program, University of Brasília, DF, Brazil
| | - Vitória Bettiol
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Thuany Alencar-Silva
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Octavio Luiz Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Catholic University of Dom Bosco, Campo Grande, MS, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Faculty of Medicine, University of Brasília, DF, Brazil
| | - Maria Sueli Soares Felipe
- Public Health Program, University of Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil.
| |
Collapse
|
21
|
Woollard L, Gorman R, Rosenfelt DJ. Improving patient informed consent for haemophilia gene therapy: the case for change. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211047244. [PMID: 37181114 PMCID: PMC10032461 DOI: 10.1177/26330040211047244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/31/2021] [Indexed: 05/16/2023]
Abstract
Adeno-associated virus-based gene therapy points to a coming transformation in the treatment of people living with haemophilia, promising sustained bleed control and potential improvement in quality of life. Nevertheless, the consequences of introducing new genetic material are not trivial. The perceived benefits should not minimise the challenges facing patients in understanding the long-term risks and providing a valid and meaningful informed consent, whether in a research or clinical setting. Informed consent is a fundamentally important doctrine in both medical ethics and health law, upholding an individual's right to define their personal goals and make their own autonomous choices. Patients should be enabled to recognise their clinical situation, understand the implications of treatment and integrate every facet of their life into their decision. This review describes informed consent processes for haemophilia gene therapy clinical trials, factors affecting patients' decision making and the availability of patient-centred decision support interventions, to ensure that patients' interests are being protected. Regulatory guidance has been published for physicians and manufacturers in haemophilia on informed consent, including for gene therapy, while best-practice recommendations for patient-physician discussions are available. In all settings, however, communicating and presenting highly technical and complex therapeutic information is challenging, especially where multiple barriers to scientific knowledge and health literacy exist. We propose several evidence-informed strategies to enhance the consent procedure, such as utilising validated literacy and knowledge assessment tools as well as participatory learning environments over an extended period, to ensure that patients are fully cognisant of the consent they give or deny. Further research is needed to define new, creative approaches for patient education and the upholding of ethical values in the informed consent process for gene therapy. The lessons learnt and approaches developed within haemophilia could set the gold standard for good practice in ensuring ethical preparedness amidst advances in genetic therapies. Plain language summary Improving the informed consent process for people living with haemophilia considering gene therapy. Gene therapy is the process of replacing faulty genes with healthy ones. In haemophilia, gene therapy involves introducing a working copy of the gene for the clotting factor that patients are missing. Following treatment, patients should begin producing their own clotting factor normally. However, people living with haemophilia (PwH) need to be fully informed regarding the potential benefits and risks of gene therapy and what this means for them, whether as part of a research study or routine medical care.Patients must be respected and supported to make decisions about their own health and wellbeing, recognising their legal and moral right to set personal goals and make treatment choices. For this to happen in practice, patients should be aware of their individual health needs, understand the effects of treatment and consider lifestyle preferences in relation to their decisions. This article attempts to describe how informed consent is obtained in haemophilia gene therapy clinical trials, what affects a patient's ability to make decisions and the availability of information and support to respect and protect the interests of PwH.Regulators responsible for approving medical products have published guidance on informed consent for physicians and pharmaceutical manufacturers in haemophilia, including for gene therapy. Recommendations have been made about the best ways for PwH to discuss gene therapy with their physicians. Yet, poor communication of complex topics, such as gene therapy, can be problematic, especially if patients lack the skills and confidence to understand and discuss the science, or for physicians with limited time in clinic.We propose strategies to improve the consent process, so patients can feel more able to make informed decisions about new treatments. Further research is needed to find new, creative approaches for educating patients and ensuring that the informed consent process for gene therapy in haemophilia is ethical.
Collapse
Affiliation(s)
- Laurence Woollard
- On The Pulse Consultancy, Ltd., 14 Church View,
Wixoe, Sudbury, CO10 8UH, UK
| | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision. RECENT FINDINGS Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases. SUMMARY Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.
Collapse
Affiliation(s)
- Arun Pradhan
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
23
|
Baradaran-Rafii A, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Aghayan HR, Larijani B, Rezaei-Tavirani M, Biglar M, Arjmand B. Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank 2020; 21:339-347. [PMID: 32157501 DOI: 10.1007/s10561-020-09826-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration as one of the most common causes of worldwide vision loss needs a proper approach for treatment. Therein, cell therapy and regenerative medicine can hold a great promise to be an effective approach. Accordingly, some preclinical and clinical studies were conducted to search around the therapeutic influence of stem cells in Age-related macular degeneration models and subjects. Hereupon, the purpose of the current review is to discuss the mechanisms of age-related macular degeneration, appropriate animal models along with suitable dosage and route of stem cell administration for its treatment.
Collapse
Affiliation(s)
- Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|