1
|
Chu X, Zhu X, Xu H, Zhao W, Guo D, Chen X, Wu J, Li L, Wang H, Fei J. Deciphering the role of miRNA-mRNA interactions in cerebral vasospasm post intracranial hemorrhage. Front Mol Biosci 2025; 12:1492729. [PMID: 39981435 PMCID: PMC11840915 DOI: 10.3389/fmolb.2025.1492729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral vasospasm (CVS), a serious complication following subarachnoid hemorrhage, is associated with high rates of mortality and disability. Emerging evidence suggests that abnormal miRNA and mRNA are involved in the development of CVS. This study aims to identify essential miRNA-mRNA regulatory pairs that contribute to CVS pathogenesis. We compared the differences between spasm and non-spasm groups after cerebral hemorrhage, identifying 183 differentially expressed genes (DEGs) and 19 differentially expressed miRNAs (DEMs) related to cerebral vasospasm from the GEO database. Further functional enrichment and KEGG analysis revealed that these DEGs were enriched in several terms and pathways, including the PI3K/AKT/mTOR signaling pathway, oxidative phosphorylation pathway, RNA degradation, and folate biosynthesis signaling pathway. By employing the degree scores method for each gene, we identified the top 10 genes and developed a protein-protein interaction (PPI) network. Additionally, we discovered 19 DEMs associated with CVS and integrated them with mRNA dataset analysis to construct a miRNA-mRNA network, which comprised 8 functionally differentially expressed DEMs and 6 target mRNAs. Experimental validation confirmed the significant regulatory roles of four miRNAs (Let-7a-5p, miR-24-3p, miR-29-3p, and miR-132-3p) and two mRNAs (CDK6 and SLC2A1) in the pathogenesis of CVS. In conclusion, this comprehensive study identifies pivotal miRNAs and their target mRNAs associated with CVS through an integrated bioinformatics analysis of miRNA-mRNA co-expression networks. This approach elucidates the intricate molecular mechanisms underlying CVS and uncovers potential therapeutic targets, thereby providing a valuable foundation for refining and optimizing future treatment strategies.
Collapse
Affiliation(s)
- Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children’s Hospital, Chongqing Medical University, Chongqing, China
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Honghao Xu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Debin Guo
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinze Wu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Fei
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Yan J, Chen D, Duan J, Hong T. Subarachnoid hemorrhage alters CX43 and ACKR3 levels in cerebrospinal fluid: A preclinical study. Asian J Surg 2023; 46:6101-6102. [PMID: 37777402 DOI: 10.1016/j.asjsur.2023.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Affiliation(s)
- Jian Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, 330006, Nanchang, China.
| | - Dianda Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, 330006, Nanchang, China.
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, 330006, Nanchang, China.
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, 330006, Nanchang, China.
| |
Collapse
|
3
|
Phillips CM, Johnson AM, Stamatovic SM, Keep RF, Andjelkovic AV. 20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3. Neurobiol Dis 2023; 186:106277. [PMID: 37652184 DOI: 10.1016/j.nbd.2023.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate program, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Zhang M, Wang ZZ, Chen NH. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023; 28:4914. [PMID: 37446576 DOI: 10.3390/molecules28134914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Connexin 43 (Cx43) is most widely distributed in mammals, especially in the cardiovascular and nervous systems. Its phosphorylation state has been found to be regulated by the action of more than ten kinases and phosphatases, including mitogen-activated protein kinase/extracellular signaling and regulating kinase signaling. In addition, the phosphorylation status of different phosphorylation sites affects its own synthesis and assembly and the function of the gap junctions (GJs) to varying degrees. The phosphorylation of Cx43 can affect the permeability, electrical conductivity, and gating properties of GJs, thereby having various effects on intercellular communication and affecting physiological or pathological processes in vitro and in vivo. Therefore, clarifying the relationship between Cx43 phosphorylation and specific disease processes will help us better understand the disease. Based on the above clinical and preclinical findings, we present in this review the functional significance of Cx43 phosphorylation in multiple diseases and discuss the potential of Cx43 as a drug target in Cx43-related disease pathophysiology, with an emphasis on the importance of connexin 43 as an emerging therapeutic target in cardiac and neuroprotection.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Takemoto JY, Altenberg GA, Poudyal N, Subedi YP, Chang CWT. Amphiphilic aminoglycosides: Modifications that revive old natural product antibiotics. Front Microbiol 2022; 13:1000199. [PMID: 36212866 PMCID: PMC9537547 DOI: 10.3389/fmicb.2022.1000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Widely-used Streptomyces-derived antibacterial aminoglycosides have encountered challenges because of antibiotic resistance and toxicity. Today, they are largely relegated to medicinal topical applications. However, chemical modification to amphiphilic aminoglycosides can revive their efficacy against bacterial pathogens and expand their targets to other pathogenic microbes and disorders associated with hyperactive connexin hemichannels. For example, amphiphilic versions of neomycin and neamine are not subject to resistance and have expanded antibacterial spectra, and amphiphilic kanamycins are effective antifungals and have promising therapeutic uses as connexin hemichannel inhibitors. With further research and discoveries aimed at improved formulations and delivery, amphiphilic aminoglycosides may achieve new horizons in pharmacopeia and agriculture for Streptomyces aminoglycosides beyond just serving as topical antibacterials.
Collapse
Affiliation(s)
- Jon Y. Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Yagya P. Subedi
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
- *Correspondence: Cheng-Wei T. Chang,
| |
Collapse
|
6
|
Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage. BIOLOGY 2021; 11:biology11010027. [PMID: 35053024 PMCID: PMC8772966 DOI: 10.3390/biology11010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Intracerebral hemorrhage (ICH) is a leading medical problem without effective treatment options. The poor prognosis is attributed to the primary brain injury of the mechanical compression caused by hematoma, and secondary brain injury (SBI) that includes inflammation, glutamate excitotoxicity, oxidative stress and disruption of the blood brain barrier (BBB). Evidences suggests that gap junctions and hemichannels composed of connexins and pannexins regulate the inflammation and excitotoxicity insult in the pathological process of central nervous system disease, such as cerebral ischemia and neurodegeneration disease. In this manuscript, we discuss the fact that connexins- and pannexins-based channels could be involved in secondary brain injury of ICH, particularly through mediating inflammation, oxidative stress, BBB disruption and cell death. The details provided in this manuscript may help develop potential targets for therapeutic intervention of ICH. Abstract Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12–39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.
Collapse
|
7
|
Deng X, Liang C, Qian L, Zhang Q. miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage. Am J Transl Res 2021; 13:1064-1074. [PMID: 33841640 PMCID: PMC8014398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of miR-24 and HMOX1 on the inflammatory response and neurological function in rats with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). METHODS Fifteen Sprague-Dawley rats were randomly assigned to the sham group (sham operation, treated with normal saline). Rat model of SAH-induced CVS was established in 90 rats, and these rats were randomly divided into the model, miR-24 NC (treated with miR-24-NC vector), miR-24 inhibitor (treated with miR-24 inhibitor vector), HMOX-NC (treated with HMOX1-NC vector), oe-HMOX1 (treated with HMOX1 overexpression vector), and miR-24 inhibitor + si-HMOX1 (treated with miR-24 inhibitor and si-HMOX1 vectors) groups. Adenoviral vectors containing the target sequences were injected into the hippocampus of the rats in the corresponding groups. Dual-luciferase reporter assay was conducted to verify the relationship between miR-24 and HMOX1. The learning and memory abilities, neurological function, cerebral edema, permeability of blood-brain barrier, myeloperoxidase activity, and levels of miR-24, HMOX1, interleukin-6, tumor necrosis factor-α, superoxide dismutase, and malondialdehyde in rats were examined. RESULTS miR-24 could negatively regulate HMOX1 expression. SAH-induced CVS was accompanied with increased miR-24 expression and decreased HMOX1 expression. Inhibiting miR-24 expression or enhancing the expression of its down streaming target, HMOX1, could partly reverse the increased oxidation and inflammation as well as functional deficits in the rats. Moreover, the effects of miR-24 inhibitor could be reversed by inhibiting HMOX1 expression. CONCLUSION miR-24 downregulation can promote HMOX1 expression, thereby decreasing the inflammatory response and improving the neurological function of rats with CVS after SAH.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Neurosurgery, The First Affiliated Hospital of China Naval Medical UniversityShanghai City, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of MedicineNanjing, Jiangsu Province, China
| | - Lei Qian
- Department of Neurosurgery, The First Affiliated Hospital of China Naval Medical UniversityShanghai City, China
| | - Qi Zhang
- Department of Cerebrovascular Diseases, Brain Hospital Affiliated to Tongji UniversityShanghai City, China
| |
Collapse
|
8
|
Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021; 13:379-392. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.
Collapse
|
9
|
Zhou Z, Chen F, Zhong S, Zhou Y, Zhang R, Kang K, Zhang X, Xu Y, Zhao M, Zhao C. Molecular identification of protein kinase C beta in Alzheimer's disease. Aging (Albany NY) 2020; 12:21798-21808. [PMID: 33186918 PMCID: PMC7695410 DOI: 10.18632/aging.103994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to investigate the potential roles of protein kinase C beta (PRKCB) in the pathogenesis of Alzheimer’s disease (AD). We identified 2,254 differentially expressed genes from 19,245 background genes in AD versus control as well as PRKCB-low versus high group. Five co-expression modules were constructed by weight gene correlation network analysis. Among them, the 1,222 genes of the turquoise module had the strongest relation to AD and those with low PRKCB expression, which were enriched in apoptosis, axon guidance, gap junction, Fc gamma receptor (FcγR)-mediated phagocytosis, mitogen-activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF) signaling pathways. The intersection pathways of PRKCB in AD were determined, including gap junction, FcγR-mediated phagocytosis, MAPK and VEGF signaling pathways. Based on the performance evaluation of the area under the curve of 75.3%, PRKCB could accurately predict the onset of AD. Therefore, low expressions of PRKCB was a potential causative factor of AD, which might be involved in gap junction, FcγR-mediated phagocytosis, MAPK and VEGF signaling pathways.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Fenqin Chen
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Zhou
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA 30602, USA.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|