1
|
Soko GF, Kosgei BK, Meena SS, Ng YJ, Liang H, Zhang B, Liu Q, Xu T, Hou X, Han RPS. Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses. Front Immunol 2025; 15:1535647. [PMID: 39845957 PMCID: PMC11751056 DOI: 10.3389/fimmu.2024.1535647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response. Despite the potential of OVs for handling cold tumors, clinical outcomes have fallen short of expectations. To better understand the obstacles faced by oncolytic virus immunotherapy (OVI), we would like to revisit the OV issue. Growing evidence indicates that limited intratumoral penetration and inadequate intratumoral distribution of OVs are critical factors contributing to the suboptimal response to OVI. Aberrant expressions of matrix proteins by cancer-associated fibroblasts (CAFs) alter the mechanical properties of the tumor extracellular matrix (ECM). This results in increased ECM desmoplasia and elevated intratumoral interstitial fluid pressure (IFP), creating physical barriers that impede the penetration and dissemination of OVs within tumors. This review explores the latest advancements in strategies designed to improve the intratumoral penetration of OVs to facilitate the penetration of tumor-infiltrating lymphocytes (TILs) into cold tumors. Additionally, we investigated current clinical trials and challenges associated with translating these strategies into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Geofrey F. Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Benson K. Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Ying Jing Ng
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huihui Liang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bing Zhang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tielong Xu
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Dept. of Rehabilitation, Nanchang Hongdu Hospital of Chinese Medicine, Nanchang, China
| | - Ray P. S. Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Sitta J, De Carlo F, Kirven I, Tackett JH, Penfornis P, Dobbins GC, Barbier M, Del Valle L, Larsen CT, Schutt EG, Li R, Howard CM, Claudio PP. Microbubble-Protected Oncolytic Virotherapy Targeted by Sonoporation Induces Tumor Necrosis and T-Lymphocyte Infiltration in Humanized Mice Bearing Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13697. [PMID: 39769460 PMCID: PMC11678396 DOI: 10.3390/ijms252413697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent® lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system. Once inside the MB, the viral particles become acoustically active such that external ultrasound can target the delivery of the virus locally within the tumor. Humanized NSG female mice (Hu-CD34+ NSG-SGM3) engrafted in their flanks with MDA-MB-231-Luc triple-negative breast cancer (TNBC) cells were transduced with MB/OVs, with or without adjuvant Pembrolizumab treatment, and tumor sizes and tumor necrosis were assessed. The presence of CD8+ (cytotoxic T-cells), CD4+ (helper T-cells), and CD25+ (Tregs) tumor-infiltrating lymphocytes (TILs) was quantified in the tumor samples by immunohistochemistry. In an in vivo model of humanized mice engrafted with a human immune system, we observed significantly greater tumor necrosis and smaller tumor mass in human TNBC xenografts systemically treated with MB/OV complexes in the presence or absence of pembrolizumab adjuvant treatment, compared to controls. Additionally, we observed a low ratio of CD4+/CD8+ TILs and a high ratio of CD8+/CD25+ TILs in the MDA-MB-231 xenografts treated with MB/OVs complexes with or without pembrolizumab adjuvant treatment, compared to controls. Our study demonstrated the feasibility of using MBs to target OVs to TNBC through diagnostic ultrasound, which decreased tumor mass by increasing tumor necrosis and stimulated a local and systemic antitumoral immune response by increasing intratumoral CD8+ T-cytotoxic lymphocyte infiltration and decreasing CD25+ Treg cells.
Collapse
Affiliation(s)
- Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Imani Kirven
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - John H. Tackett
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Patrice Penfornis
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - George Clement Dobbins
- Department of Neurosurgery and Bioinformatics, University of Alabama Birmingham, Birmingham, AL 35205, USA;
| | - Mallory Barbier
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | - Luis Del Valle
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | | | - Ernest G. Schutt
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Rhodemann Li
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| |
Collapse
|
3
|
Rix A, Heinrichs H, Porte C, Leenaars C, Bleich A, Kiessling F. Ultrasound-induced immune responses in tumors: A systematic review and meta-analysis. J Control Release 2024; 371:146-157. [PMID: 38777126 DOI: 10.1016/j.jconrel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound is widely used in the diagnosis and therapy of cancer. Tumors can be treated by thermal or mechanical tissue ablation. Furthermore, tumors can be manipulated by hyperthermia, sonodynamic therapy and sonoporation, e.g., by increasing tumor perfusion or the permeability of biological barriers to enhance drug delivery. These treatments induce various immune responses in tumors. However, conflicting data and high heterogeneity between experimental settings make it difficult to generalize the effects of ultrasound on tumor immunity. Therefore, we performed a systematic review to answer the question: "Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound?" A systematic literature search was performed in PubMed, EMBASE, and Web of Science and 24,401 potentially relevant publications were identified. Of these, 96 publications were eligible for inclusion in the systematic review. Experiments were performed in humans, rats, and mice and focused on different tumor types, primarily breast and melanoma. We collected data on thermal and non-thermal ultrasound settings, the use of sono-sensitizers or sono-enhancers, and anti-tumor therapies. Six meta-analyses were performed to quantify the effect of ultrasound on tumor infiltration by T cells (cytotoxic, helper, and regulatory T cells) and on blood cytokines (interleukin-6, interferon-γ, tumor necrosis factor-α). We provide robust scientific evidence that ultrasound alters T cell infiltration into tumors and increases blood cytokine concentrations. Furthermore, we identified significant differences in immune cell infiltration based on tumor type, ultrasound settings, and mouse age. Stronger effects were observed using hyperthermia in combination with sono-sensitizers and in young mice. The latter may impair the translational impact of study results as most cancer patients are older. Thus, our results may help refining ultrasound parameters to enhance anti-tumor immune responses for therapeutic use and to minimize immune effects in diagnostic applications.
Collapse
Affiliation(s)
- Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Helen Heinrichs
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
4
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
5
|
Liu R, Xu Y, Qu S, Dai Z. Major Strategies for Spatial Control of Ultrasound-Driven Gene Expression to Enhance Therapeutic Specificity. Crit Rev Biomed Eng 2023; 51:29-40. [PMID: 37522539 DOI: 10.1615/critrevbiomedeng.2023047680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A major challenge of gene therapy is to achieve highly specific transgene expression in tissues of interest with minimized off-target expression. Ultrasound in combination with microbubbles can transiently increase permeability of desired cells or tissues and thereby facilitate gene transfer. This kind of ultrasound-driven transgene expression has gained increasing attention due to its deep tissue penetration and high spatiotemporal resolution. However, successful genetic manipulation in vivo with ultrasound need to well optimize various aspects involved in this process. Ultrasound parameters, microbubble dose, and gene vectors need to be optimized for highly increased transgene expression in the cells of interest. Conversely, the potential off-target transgene expression and toxicities need to be reduced by modification of gene vectors and/or promoter sequence. This review will discuss some major strategies for enhanced specificity of the ultrasound-mediated gene transfer in vivo. Five major strategies will be discussed, including the integration of real-time imaging methods, local injection, targeted microbubbles loaded with nucleic acids, stealth nanocarriers, and cell-specific promoter. The advantages and limitations of each strategy were outlined, hoping to provide a guideline for researchers in achieving high specific ultrasound-driven gene expression.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| |
Collapse
|
6
|
Sitta J, Claudio PP, Howard CM. Virus-Based Immuno-Oncology Models. Biomedicines 2022; 10:biomedicines10061441. [PMID: 35740462 PMCID: PMC9220907 DOI: 10.3390/biomedicines10061441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been extensively explored in recent years with encouraging results in selected types of cancer. Such success aroused interest in the expansion of such indications, requiring a deep understanding of the complex role of the immune system in carcinogenesis. The definition of hot vs. cold tumors and the role of the tumor microenvironment enlightened the once obscure understanding of low response rates of solid tumors to immune check point inhibitors. Although the major scope found in the literature focuses on the T cell modulation, the innate immune system is also a promising oncolytic tool. The unveiling of the tumor immunosuppressive pathways, lead to the development of combined targeted therapies in an attempt to increase immune infiltration capability. Oncolytic viruses have been explored in different scenarios, in combination with various chemotherapeutic drugs and, more recently, with immune check point inhibitors. Moreover, oncolytic viruses may be engineered to express tumor specific pro-inflammatory cytokines, antibodies, and antigens to enhance immunologic response or block immunosuppressive mechanisms. Development of preclinical models capable to replicate the human immunologic response is one of the major challenges faced by these studies. A thorough understanding of immunotherapy and oncolytic viruses’ mechanics is paramount to develop reliable preclinical models with higher chances of successful clinical therapy application. Thus, in this article, we review current concepts in cancer immunotherapy including the inherent and synthetic mechanisms of immunologic enhancement utilizing oncolytic viruses, immune targeting, and available preclinical animal models, their advantages, and limitations.
Collapse
Affiliation(s)
- Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, Department of Radiation Oncology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Correspondence:
| |
Collapse
|
7
|
Trinh D, Nash J, Goertz D, Hynynen K, Bulner S, Iqbal U, Keenan J. Microbubble drug conjugate and focused ultrasound blood brain barrier delivery of AAV-2 SIRT-3. Drug Deliv 2022; 29:1176-1183. [PMID: 35393905 PMCID: PMC9004516 DOI: 10.1080/10717544.2022.2035855] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Delivery of viral vectors as gene therapies to treat neurodegenerative diseases has been hampered by the inability to penetrate the blood brain barrier (BBB) and invasive or non-targeted delivery options prone to inducing immune responses. MR guided focused ultrasound (MR-g-FUS) and microbubbles have demonstrated safe, temporary, targeted BBB permeabilization clinically. METHODS We developed clinically scalable, microbubble drug conjugates (MDCs) for the viral gene therapy, AAV.SIRT3-myc [adeno-associated virus expressing myc-tagged SIRT3], which has previously been shown to have disease modifying effects in animal models of Parkinson's disease (PD). The lipid shells of the perfluorocarbon gas MDCs were covalently conjugated to antibodies with binding specificity to AAVs. Following systemic (iv) delivery of AAV.SIRT3-myc MDCs, MR-g-FUS was used to deliver SIRT3-myc to brain regions affected in PD. SIRT3-myc expression was determined post mortem, using immunohistochemistry. RESULTS An in vitro, SH-SY5Y cell culture model was used to show that the localized destruction of MDCs using ultrasound exposures within biological safety limits dissociated AAV2-GFP (green fluorescent protein) from the MDCs in the targeted area while maintaining their transduction capacity. In rats, MR-g-FUS resulted in BBB permeabilization in the striatum and substantia nigra (SNc). SIRT3-myc was expressed in the striatum, but not the SNc. CONCLUSION These studies demonstrate that MDCs combined with MR-g-FUS are an effective method for delivery of viral vector gene therapies, such as AAV.SIRT3, to brain regions affected in PD. This technology may prove useful as a disease-modifying strategy in PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, Canada
| | - Joanne Nash
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, Canada
| | - David Goertz
- Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | | |
Collapse
|
8
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|
10
|
Applications of Ultrasound-Mediated Drug Delivery and Gene Therapy. Int J Mol Sci 2021; 22:ijms222111491. [PMID: 34768922 PMCID: PMC8583720 DOI: 10.3390/ijms222111491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy has continuously evolved throughout the years since its first proposal to develop more specific and effective transfection, capable of treating a myriad of health conditions. Viral vectors are some of the most common and most efficient vehicles for gene transfer. However, the safe and effective delivery of gene therapy remains a major obstacle. Ultrasound contrast agents in the form of microbubbles have provided a unique solution to fulfill the need to shield the vectors from the host immune system and the need for site specific targeted therapy. Since the discovery of the biophysical and biological effects of microbubble sonification, multiple developments have been made to enhance its applicability in targeted drug delivery. The concurrent development of viral vectors and recent research on dual vector strategies have shown promising results. This review will explore the mechanisms and recent advancements in the knowledge of ultrasound-mediated microbubbles in targeting gene and drug therapy.
Collapse
|
11
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|