1
|
杨 坤, 吴 越, 章 容, 雷 小, 康 兰, 董 文. [Role of reactive oxygen species/silent information regulator 1 in hyperoxia-induced bronchial epithelial cell injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:852-860. [PMID: 39148391 PMCID: PMC11334550 DOI: 10.7499/j.issn.1008-8830.2404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES To investigate the effect of reactive oxygen species (ROS)/silent information regulator 1 (SIRT1) on hyperoxia-induced mitochondrial injury in BEAS-2B cells. METHODS The experiment was divided into three parts. In the first part, cells were divided into H0, H6, H12, H24, and H48 groups. In the second part, cells were divided into control group, H48 group, H48 hyperoxia+SIRT1 inhibitor group (H48+EX 527 group), and H48 hyperoxia+SIRT1 agonist group (H48+SRT1720 group). In the third part, cells were divided into control group, 48-hour hyperoxia+N-acetylcysteine group (H48+NAC group), and H48 group. The ROS kit was used to measure the level of ROS. Western blot and immunofluorescent staining were used to measure the expression levels of SIRT1 and mitochondria-related proteins. Transmission electron microscopy was used to observe the morphology of mitochondria. RESULTS Compared with the H0 group, the H6, H12, H24, and H48 groups had a significantly increased fluorescence intensity of ROS (P<0.05), the H48 group had significant reductions in the expression levels of SIRT1 protein and mitochondria-related proteins (P<0.05), and the H24 and H48 groups had a significant reduction in the fluorescence intensity of mitochondria-related proteins (P<0.05). Compared with the H48 group, the H48+SRT1720 group had significant increases in the expression levels of mitochondria-related proteins and the mitochondrial aspect ratio (P<0.05), and the H48+EX 527 group had a significant reduction in the mitochondrial area (P<0.05). Compared with the H48 group, the H48+NAC group had a significantly decreased fluorescence intensity of ROS (P<0.05) and significantly increased levels of SIRT1 protein, mitochondria-related proteins, mitochondrial area, and mitochondrial aspect ratio (P<0.05). CONCLUSIONS The ROS/SIRT1 axis is involved in hyperoxia-induced mitochondrial injury in BEAS-2B cells.
Collapse
|
2
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. Lysine demethylase KDM3A alleviates hyperoxia-induced bronchopulmonary dysplasia in mice by promoting ETS1 expression. Exp Cell Res 2024; 435:113945. [PMID: 38286256 DOI: 10.1016/j.yexcr.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
3
|
Olson KR. Always enough but never too much: the how and why of downregulating tissue oxygenation. Am J Physiol Heart Circ Physiol 2023; 325:H888-H891. [PMID: 37624098 DOI: 10.1152/ajpheart.00449.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Cardiovascular regulation of tissue oxygenation is generally viewed as an anti-drop process that prevents tissue oxygen concentration from falling below some minimum. I propose that cardiovascular regulation is predominately an anti-rise process designed to downregulate oxygen delivery. This maintains an evolutionarily conserved, reduced intracellular environment to prevent oxidation of redox-sensitive regulatory protein thiols. A number of points support this hypothesis. First, oxygen is the only nutrient with a positive, fourfold diffusion gradient from the environment to systemic tissues, minimizing the likelihood that oxygen delivery is limited. Second, hemoglobin (Hb) retains oxygen unless offloading is absolutely necessary. The allosteric properties of Hb keep oxygen tightly bound until absolutely needed, and the Bohr shift, which favors offloading, is only transient and lost when metabolism is restored. Third, a myoglobin-like Hb (xHb) would offload all of its oxygen and could easily have evolved, but it did not. Fourth, oxygen-sensitive vasoconstrictors and hyperoxic-rarefaction prevent acute and chronic over perfusion. Fifth, Fåhraeus and Fåhraeus-Lindqvist effects reduce capillary hematocrit to minimize microcirculatory oxygen content. Sixth, venous blood remains 75% saturated, wasting 75% of cardiac output were an oxygen reserve not needed. Finally, xHb-containing red blood cells could be considerably smaller and thereby decrease Fåhraeus and Fåhraeus-Lindqvist effects and cardiac load. In summary, the capacity of the cardiovascular system to deliver oxygen to the tissues generally exceeds demand, and although maintenance of an oxygen delivery reserve is important, it is more important to prevent excess oxygen delivery.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States
| |
Collapse
|
4
|
Zhang S, Li X, Yuan T, Guo X, Jin C, Jin Z, Li J. Glutamine inhibits inflammation, oxidative stress, and apoptosis and ameliorates hyperoxic lung injury. J Physiol Biochem 2023; 79:613-623. [PMID: 37145351 DOI: 10.1007/s13105-023-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Glutamine (Gln) is the most widely acting and abundant amino acid in the body and has anti-inflammatory properties, regulates body metabolism, and improves immune function. However, the mechanism of Gln's effect on hyperoxic lung injury in neonatal rats is unclear. Therefore, this work focused on examining Gln's function in lung injury of newborn rats mediated by hyperoxia and the underlying mechanism. We examined body mass and ratio of wet-to-dry lung tissue weights of neonatal rats. Hematoxylin and eosin (HE) staining was performed to examine histopathological alterations of lung tissues. In addition, enzyme-linked immunoassay (ELISA) was conducted to measure pro-inflammatory cytokine levels within bronchoalveolar lavage fluid (BALF). Apoptosis of lung tissues was observed using TUNEL assay. Western blotting was performed for detecting endoplasmic reticulum stress (ERS)-associated protein levels. The results showed that Gln promoted body weight gain, significantly reduced pathological damage and oxidative stress in lung tissue, and improved lung function in neonatal rats. Gln reduced pro-inflammatory cytokine release as well as inflammatory cell production in BALF and inhibited apoptosis in lung tissue cells. Furthermore, we found that Gln could downregulate ERS-associated protein levels (GRP78, Caspase-12, CHOP) and inhibit c-Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) phosphorylation. These results in an animal model of bronchopulmonary dysplasia (BPD) suggest that Gln may have a therapeutic effect on BPD by reducing lung inflammation, oxidative stress, and apoptosis and improving lung function; its mechanism of action may be related to the inhibition of the IRE1α/JNK pathway.
Collapse
Affiliation(s)
- Shujian Zhang
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xuewei Li
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tiezheng Yuan
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin, China
| | - Xiangyu Guo
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin, China
| | - Can Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhengyong Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jinliang Li
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
5
|
Vichare R, Saleem F, Mansour H, Bojkovic K, Cheng F, Biswal M, Panguluri SK. Impact of age and sex on hyperoxia-induced cardiovascular pathophysiology. Mech Ageing Dev 2022; 208:111727. [PMID: 36075315 DOI: 10.1016/j.mad.2022.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Hyperoxia is characterized by pronounced inflammatory responses, pulmonary cell apoptosis, and adverse cardiac remodeling due to an excess supply of oxygen. Hyperoxic episodes are frequent in mechanically ventilated patients and are associated with in-hospital mortality. This study extends the analysis of prior published research by our group as it investigates the influence of age in male and female rodents exposed to hyperoxic conditions. Age is an independent cardiovascular risk factor, often compounded by variables like obesity, diabetes, and a decline in sex hormones and their receptors. This study simulates clinical hyperoxia by subjecting rodents to > 90 % of oxygen for 72 h and compares the changes in cardiac structural and functional parameters with those exposed to normal air. While in both sexes conduction abnormalities with ageing were discernible, aged females owing to their inherent higher baseline QTc, were at a higher risk of developing arrhythmias as compared to age-matched males. Quantitative real-time RT-PCR and western blot analysis reflected altered expression of cardiac potassium channels, resulting in conduction abnormalities in aged female rodents. Unaffected by age and sex, hyperoxia-treated mice had altered body composition, as evidenced by a considerable reduction in body weight. Interestingly, compensatory hypertrophy observed as a protective mechanism in young males was absent in aged males, whereas protection of hearts from hyperoxia-induced cardiac hypertrophy was absent in aged female mice, both of which may be at least in part due to a reduction in sex steroid receptors and the systemic steroid levels. Finally, statistical analysis revealed that hyperoxia had the greatest impact on most of the cardiac parameters, followed by age and then sex. This data established an imperative finding that can change the provision of care for aged individuals admitted to ICU by elucidating the impact of intrinsic aging on hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Riddhi Vichare
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Katarina Bojkovic
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Manas Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; College of Medicine Internal Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Yang Y, Li Y, Yuan H, Liu X, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Characterization of circRNA–miRNA–mRNA networks regulating oxygen utilization in type II alveolar epithelial cells of Tibetan pigs. Front Mol Biosci 2022; 9:854250. [PMID: 36213124 PMCID: PMC9532862 DOI: 10.3389/fmolb.2022.854250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the signaling pathway regulatory mechanisms in type II alveolar epithelial (ATII) cells, the progenitor cells responsible for proliferating and regenerating type I alveolar epithelial (ATI) and ATII cells, in Tibetan pigs is beneficial for exploring methods of preventing and repairing cellular damage during hypoxia. We simulated a hypoxic environment (2% O2) for culture ATII cells of Tibetan pigs and Landrace pigs, with cells cultured under normoxic conditions (21% O2) as a control group, and performed integrated analysis of circular RNA (circRNA)–microRNA (miRNA)–messenger RNA (mRNA) regulatory axes by whole-transcriptome sequencing. Functional enrichment analysis indicated that the source genes of the differential expressed circRNAs (DEcircRNAs) were primarily involved in cell proliferation, cellular processes, and cell killing. A series of DEcircRNAs were derived from inhibitors of apoptosis proteins and led to a key autonomous effect as modulators of cell repair in Tibetan pigs under hypoxia. The significant higher expression of COL5A1 in TL groups may inhibited apoptosis of ATII cells in Tibetan pigs under lower oxygen concentration, and may lead their better survive in the hypoxia environment. In addition, a competing endogenous RNA (ceRNA) network of functional interactions was constructed that included novel_circ_000898-ssc-miR-199a-5p-CAV1 and novel_circ_000898-ssc-miR-378-BMP2, based on the node genes ssc-miR-199a-5p and ssc-miR-378, which may regulate multiple miRNAs and mRNAs that mediate endoplasmic reticulum (ER) stress-induced apoptosis and inflammation and attenuate hypoxia-induced injury in ATII cells under hypoxic conditions. These results broaden our knowledge of circRNAs, miRNAs, and mRNAs associated with hypoxia and provide new insights into the hypoxic response of ATII cells in Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Ürümqi, Xinjiang, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao,
| |
Collapse
|
7
|
Voulgarelis S, Fathi F, Yu B, Palkovic B, Chatzizacharias NA, Allen KP, Stucke AG. Hepatic artery flow, inspired oxygen, and hemoglobin determine liver tissue saturation measured with visible diffuse reflectance spectroscopy (vis-DRS) in an in vivo swine model. Pediatr Transplant 2022; 26:e14230. [PMID: 35064720 DOI: 10.1111/petr.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Prompt diagnosis of vascular compromise following pediatric liver transplantation and restoration of oxygen delivery to the liver improves organ survival. vis-DRS allows for real-time measurement of liver tissue saturation. METHODS The current study used vis-DRS to determine changes in liver saturation during clinically relevant conditions of reduced oxygen delivery. In an in vivo swine model (n = 15), we determined liver tissue saturation (St O2 ) during stepwise reduction in hepatic artery flow, different inspiratory oxygen fraction (FiO2 ), and increasing hemodilution. A custom vis-DRS probe was placed directly on the organ. RESULTS Liver tissue saturation decreased significantly with a decrease in hepatic artery flow. A reduction in hepatic artery flow to 25% of baseline reduced the St O2 by 15.3 ± 1.4% at FiO2 0.3 (mean ± SE, p < .0013), and by 8.3 ± 1.9% at FiO2 1.0 (p = .0013). After hemodilution to 7-8 g/dl, St O2 was reduced by 31.8% ± 2.7%, p < .001 (FiO2 0.3) and 26.6 ± 2.7%, p < .001 (FiO2 : 1.0) respectively. Portal venous saturation during low hepatic artery flow was consistently higher at FiO2 1.0. The gradient between portal venous saturation and liver tissue saturation was consistently greater at lower hemoglobin levels (7.0 ± 1.6% per g/dl hemoglobin, p < .001). CONCLUSIONS Vis-DRS showed prompt changes in liver tissue saturation with decreases in hepatic artery blood flow. At hepatic artery flows below 50% of baseline, liver saturation depended on FiO2 and hemoglobin concentration suggesting that during hepatic artery occlusion, packed red blood cell transfusion and increased FiO2 may be useful measures to reduce hypoxic damage until surgical revascularization.
Collapse
Affiliation(s)
- Stylianos Voulgarelis
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Pediatric Anesthesia, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bing Yu
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Kenneth P Allen
- Department of Microbiology and Immunology, Biomedical Resource Center (BRC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Astrid G Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Pediatric Anesthesia, Children's Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Lao JC, Bui CB, Pang MA, Cho SX, Rudloff I, Elgass K, Schröder J, Maksimenko A, Mangan NE, Starkey MR, Skuza EM, Sun YBY, Beker F, Collins CL, Kamlin OF, König K, Malhotra A, Tan K, Theda C, Young MJ, McLean CA, Wilson NJ, Sehgal A, Hansbro PM, Pearson JT, Polo JM, Veldman A, Berger PJ, Nold-Petry CA, Nold MF. Type 2 immune polarization is associated with cardiopulmonary disease in preterm infants. Sci Transl Med 2022; 14:eaaz8454. [PMID: 35385341 DOI: 10.1126/scitranslmed.aaz8454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1β and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.
Collapse
Affiliation(s)
- Jason C Lao
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Christine B Bui
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Merrin A Pang
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Steven X Cho
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Kirstin Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Anton Maksimenko
- Imaging and Medical Beamline, Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria 3168, Australia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Elisabeth M Skuza
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Friederike Beker
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4101, Australia.,Neonatal Services, Mercy Hospital for Women, Melbourne, Victoria 3084, Australia
| | - Clare L Collins
- Neonatal Services, Mercy Hospital for Women, Melbourne, Victoria 3084, Australia
| | - Omar F Kamlin
- Department of Newborn Research, Royal Women's Hospital, Melbourne, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | - Kai König
- Department of Paediatrics, Medicum Wesemlin, Lucerne 6006, Switzerland
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria 3168, Australia
| | - Kenneth Tan
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria 3168, Australia
| | - Christiane Theda
- Department of Newborn Research, Royal Women's Hospital, Melbourne, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria 3004, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Nicholas J Wilson
- CSL Limited, Bio21 Institute, Parkville, Melbourne, Victoria 3052, Australia
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria 3168, Australia
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Ultimo, Sydney, New South Wales 2007, Australia
| | - James T Pearson
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.,Victorian Heart Institute, Melbourne, Victoria 3168, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, South Australia 5005, Australia.,South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alex Veldman
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Department of Pediatrics, Helios HSK, Wiesbaden 65199, Germany.,Department of Pediatric Cardiology, J. Liebig University, Gießen 35392, Germany
| | - Philip J Berger
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria 3168, Australia
| |
Collapse
|
9
|
Baumann P, Greco F, Wiegert S, Wellmann S, Pellegrini G, Cannizzaro V. Macitentan attenuates cardiovascular remodelling in infant rats with chronic lung disease. J Transl Med 2022; 20:77. [PMID: 35123510 PMCID: PMC8818179 DOI: 10.1186/s12967-022-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cardiovascular impairment contributes to increased mortality in preterm infants with chronic lung disease. Macitentan, an endothelin-1 receptor antagonist, has the potential to attenuate pulmonary and cardiovascular remodelling.
Methods
In a prospective randomized placebo-controlled intervention trial, Sprague–Dawley rats were exposed to 0.21 or 1.0 fraction of inspired oxygen (FiO2) for 19 postnatal days. Rats were treated via gavage with placebo or macitentan from days of life 5 to 19. Alveoli, pulmonary vessels, α-smooth muscle actin content in pulmonary arterioles, size of cardiomyocytes, right to left ventricular wall diameter ratio, and endothelin-1 plasma concentrations were assessed.
Results
FiO2 1.0 induced typical features of chronic lung disease with significant alveolar enlargement (p = 0.012), alveolar (p = 0.048) and pulmonary vessel rarefaction (p = 0.024), higher α-smooth muscle actin content in pulmonary arterioles (p = 0.009), higher right to left ventricular wall diameter ratio (p = 0.02), and larger cardiomyocyte cross-sectional area (p < 0.001). Macitentan treatment significantly increased pulmonary vessel count (p = 0.004) and decreased right to left ventricular wall diameter ratios (p = 0.002). Endothelin-1 plasma concentrations were higher compared to placebo (p = 0.015). Alveolar number and size, α-smooth muscle actin, and the cardiomyocyte cross-sectional area remained unchanged (all p > 0.05).
Conclusion
The endothelin-1 receptor antagonist macitentan attenuated cardiovascular remodelling in an infant rat model for preterm chronic lung disease. This study underscores the potential of macitentan to reduce cardiovascular morbidity in preterm infants with chronic lung disease.
Collapse
|
10
|
Ai D, Shen J, Sun J, Zhu Z, Gao R, Du Y, Yuan L, Chen C, Zhou J. Mesenchymal stem cell-derived extracellular vesicles suppress hyperoxia-induced transdifferentiation of rat alveolar type 2 epithelial cells. Stem Cells Dev 2021; 31:53-66. [PMID: 34913742 DOI: 10.1089/scd.2021.0256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most important respiratory morbidity of preterm infants with few effective preventive strategies. Administration of mesenchymal stem cells (MSC) was considered effective to prevent BPD via paracrine extracellular vesicles (EVs), while appropriate regimens of MSC-EVs and the mechanism remain unclear. Therefore, we established a hyperoxia-induced rat BPD model, and examined the effect of early intraperitoneal MSC-EVs with different doses on BPD. We found that MSC-EVs ameliorated hyperoxia-induced lung injury in a dose-dependent manner, and high dose MSC-EVs ameliorated alveolar simplification and fibrosis. Also, MSC-EVs showed its beneficial effects on vascular growth and pulmonary hypertension. Primary AT2 cells were observed to transdifferentiate into AT1 cells when exposure to hyperoxia in vitro. Administration of MSC-EVs at the first-day culture significantly delayed the transdifferentiation of AT2 cells induced by hyperoxia. We further found that exposure to hyperoxia led to elevated expression of WNT5a mRNA and protein, a key agent in AT2 transdifferentiation, while MSC-EVs administration decreased it. Further study is warranted that MSC-EVs may delay the transdifferentiation of AT2 cells via WNT5a. These studies provide key preclinical evidence of MSC-EVs therapeutics on BPD and highlight the effect of MSC-EVs on suppressing the transdifferentiation of AT2 cells and its possible mechanism through downregulation of WNT5a.
Collapse
Affiliation(s)
- Danyang Ai
- Children's Hospital of Fudan University, 145601, Neonatology, 399 Wanyuan Road, Minhang District, Shanghai, Shanghai, Shanghai, China, 201102;
| | - Jieru Shen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jiali Sun
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Zhicheng Zhu
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Ruiwei Gao
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Yang Du
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Lin Yuan
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Chao Chen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jianguo Zhou
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| |
Collapse
|
11
|
Baumann P, Cannizzaro V. Lung function assessment in critically ill children: craving for standardisation. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci 2021; 11:brainsci11070889. [PMID: 34356124 PMCID: PMC8301933 DOI: 10.3390/brainsci11070889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon's mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25-30% 60 min) 15-30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.
Collapse
|
13
|
Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun 2021; 12:1565. [PMID: 33692365 PMCID: PMC7946947 DOI: 10.1038/s41467-021-21865-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
During late lung development, alveolar and microvascular development is finalized to enable sufficient gas exchange. Impaired late lung development manifests as bronchopulmonary dysplasia (BPD) in preterm infants. Single-cell RNA sequencing (scRNA-seq) allows for assessment of complex cellular dynamics during biological processes, such as development. Here, we use MULTI-seq to generate scRNA-seq profiles of over 66,000 cells from 36 mice during normal or impaired lung development secondary to hyperoxia with validation of some of the findings in lungs from BPD patients. We observe dynamic populations of cells, including several rare cell types and putative progenitors. Hyperoxia exposure, which mimics the BPD phenotype, alters the composition of all cellular compartments, particularly alveolar epithelium, stromal fibroblasts, capillary endothelium and macrophage populations. Pathway analysis and predicted dynamic cellular crosstalk suggest inflammatory signaling as the main driver of hyperoxia-induced changes. Our data provides a single-cell view of cellular changes associated with late lung development in health and disease.
Collapse
|
14
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
15
|
Chao CM, Chong L, Chu X, Shrestha A, Behnke J, Ehrhardt H, Zhang J, Chen C, Bellusci S. Targeting Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension (BPD-PH): Potential Role of the FGF Signaling Pathway in the Development of the Pulmonary Vascular System. Cells 2020; 9:cells9081875. [PMID: 32796770 PMCID: PMC7464452 DOI: 10.3390/cells9081875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
More than 50 years after the first description of Bronchopulmonary dysplasia (BPD) by Northway, this chronic lung disease affecting many preterm infants is still poorly understood. Additonally, approximately 40% of preterm infants suffering from severe BPD also suffer from Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH), leading to a significant increase in total morbidity and mortality. Until today, there is no curative therapy for both BPD and BPD-PH available. It has become increasingly evident that growth factors are playing a central role in normal and pathologic development of the pulmonary vasculature. Thus, this review aims to summarize the recent evidence in our understanding of BPD-PH from a basic scientific point of view, focusing on the potential role of Fibroblast Growth Factor (FGF)/FGF10 signaling pathway contributing to disease development, progression and resolution.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
- Correspondence: (C.-M.C.); (S.B.)
| | - Lei Chong
- Institute of Pediatrics, National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China;
| | - Xuran Chu
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Amit Shrestha
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Jinsan Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University, Wenzhou 325035, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Correspondence: (C.-M.C.); (S.B.)
| |
Collapse
|
16
|
Tretter V, Zach ML, Böhme S, Ullrich R, Markstaller K, Klein KU. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol 2020; 11:947. [PMID: 32848874 PMCID: PMC7417655 DOI: 10.3389/fphys.2020.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Chu X, Weng B, Gong X, Cai C. An Innovative Model of Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2020; 8:271. [PMID: 32537448 PMCID: PMC7267036 DOI: 10.3389/fped.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the common chronic lung diseases (CLD) of premature infants, which causes unpredictable consequences to the family and society. Therefore, the pathogenesis and prevention methods of BPD are the focus of current research, and the establishment of an effective and appropriate animal model of BPD in premature infants is the key to the research. In this study, premature rats were exposed to hyperoxia environment. Compared with the air group, the body weight and alveolar radiation count of the hyperoxia group decreased significantly, but there was no significant difference in body length. HE staining was used to observe the pathological changes of BPD in the lung tissue. The above results proved that under the hyperoxia condition, the BPD animal model of premature infants was successfully established, which provided a new choice for the future research of BPD.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Weng
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|