1
|
Fu R, Qin P, Zou X, Hu Z, Hong N, Wang Y, Jin W. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:702897. [PMID: 34722498 PMCID: PMC8548578 DOI: 10.3389/fcell.2021.702897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have not been reported and are potentially hematopoietic specific, supporting MAEs are functional relevance. Comparison of BMMC samples from a leukemia patient with multiple clinical stages showed the fractions of constitutive MAE were correlated with fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia cells and normal cells showed that leukemia cells have much higher constitutive MAE and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed leukemia cell-specific MAEs, which were enriched in immune-related functions. These results indicate MAE is prevalent and is an important gene regulation mechanism during hematopoiesis and leukemogenesis. As the first systematical interrogation of constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and leukemogenesis, the study significantly increased our knowledge about the features and functions of MAEs.
Collapse
Affiliation(s)
- Ruiqing Fu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pengfei Qin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Al Hashmi M, Sastry KS, Silcock L, Chouchane L, Mattei V, James N, Mathew R, Bedognetti D, De Giorgi V, Murtas D, Liu W, Chouchane A, Temanni R, Seliger B, Wang E, Marincola FM, Tomei S. Differential responsiveness to BRAF inhibitors of melanoma cell lines BRAF V600E-mutated. J Transl Med 2020; 18:192. [PMID: 32393282 PMCID: PMC7216681 DOI: 10.1186/s12967-020-02350-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. Methods DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. Results Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. Conclusion Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.
Collapse
Affiliation(s)
- Muna Al Hashmi
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Konduru S Sastry
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lee Silcock
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Valentina Mattei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Nicola James
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Rebecca Mathew
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Davide Bedognetti
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Valeria De Giorgi
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Wei Liu
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Aouatef Chouchane
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Ramzi Temanni
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Francesco M Marincola
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.,Refuge Biotechnologies, Menlo Park, CA, USA
| | - Sara Tomei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.
| |
Collapse
|