1
|
Zhan X, Li J, Zeng R, Lei L, Feng A, Yang Z. MiR-92a-2-5p suppresses esophageal squamous cell carcinoma cell proliferation and invasion by targeting PRDX2. Exp Cell Res 2024; 435:113925. [PMID: 38211680 DOI: 10.1016/j.yexcr.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/β-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.
Collapse
Affiliation(s)
- Xiang Zhan
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Lingli Lei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China; Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
2
|
Psilopatis I, Vrettou K, Kokkali S, Theocharis S. The Role of MicroRNAs in Uterine Leiomyosarcoma Diagnosis and Treatment. Cancers (Basel) 2023; 15:cancers15092420. [PMID: 37173887 PMCID: PMC10177388 DOI: 10.3390/cancers15092420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Uterine sarcomas are rare gynecological tumors arising from the myometrium or the connective tissue of the endometrium with a relatively poor prognosis. MicroRNAs (miRNAs) represent small, single-stranded, non-coding RNA molecules that can function as oncogenes or tumor suppressors under certain conditions. The current review aims at studying the role of miRNAs in uterine sarcoma diagnosis and treatment. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms "microRNA" and "uterine sarcoma" were employed, and we were able to identify 24 studies published between 2008 and 2022. The current manuscript represents the first comprehensive review of the literature focusing on the particular role of miRNAs as biomarkers for uterine sarcomas. miRNAs were found to exhibit differential expression in uterine sarcoma cell lines and interact with certain genes correlating with tumorigenesis and cancer progression, whereas selected miRNA isoforms seem to be either over- or under-expressed in uterine sarcoma samples compared to normal uteri or benign tumors. Furthermore, miRNA levels correlate with various clinical prognostic parameters in uterine sarcoma patients, whereas each uterine sarcoma subtype is characterized by a unique miRNA profile. In summary, miRNAs seemingly represent novel trustworthy biomarkers for the diagnosis and treatment of uterine sarcoma.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Oncology Unit, 2nd Department of Medicine, National and Kapodistrian University of Athens, Medical School, Hippocratio General Hospital of Athens, V. Sofias 114, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
3
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
4
|
Alvarado-Flores F, Kaneko-Tarui T, Beyer W, Katz J, Chu T, Catalano P, Sadovsky Y, Hivert MF, O’Tierney-Ginn P. Placental miR-3940-3p Is Associated With Maternal Insulin Resistance in Late Pregnancy. J Clin Endocrinol Metab 2021; 106:3526-3535. [PMID: 34333643 PMCID: PMC8787748 DOI: 10.1210/clinem/dgab571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT An increase in maternal insulin resistance (IR) during pregnancy is essential for normal fetal growth. The mechanisms underlying this adaptation are poorly understood. Placental factors are believed to instigate and maintain these changes, as IR decreases shortly after delivery. Methylation of placental gene loci that are common targets for miRNAs are associated with maternal IR. OBJECTIVE We hypothesized that placental miRNAs targeting methylated loci are associated with maternal IR during late pregnancy. METHODS We collected placentas from 132 elective cesarean sections and fasting blood samples at delivery to estimate maternal homeostasis model assessment of insulin resistance (HOMA-IR). Placental miRNA expression was measured via whole genome small-RNA sequencing in a subset of 40 placentas selected by maternal pre-gravid body mass index (BMI) and neonatal adiposity. Five miRNAs correlated with maternal HOMA-IR and previously identified as targeting methylated genes were selected for validation in all 132 placenta samples via RT-qPCR. Multiple regression adjusted for relevant clinical variables. RESULTS Median maternal age was 27.5 years, with median pre-pregnancy BMI of 24.7 kg/m2, and median HOMA-IR of 2.9. Among the 5 selected miRNA, maternal HOMA-IR correlated with the placental expression of miRNA-371b-3p (r = 0.25; P = 0.008) and miRNA-3940-3p (r = 0.32; P = 0.0004) across the 132 individuals. After adjustment for confounding variables, placental miRNA-3940-3p expression remained significantly associated with HOMA-IR (β = 0.16; P = 0.03). CONCLUSION Placental miRNA-3940-3p was associated with maternal IR at delivery. This placental miRNA may have an autocrine or paracrine effect-regulating placental genes involved in modulating maternal IR.
Collapse
Affiliation(s)
| | - Tomoko Kaneko-Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - William Beyer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacqueline Katz
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Tianjiao Chu
- Magee Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Patrick Catalano
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Yoel Sadovsky
- Magee Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School; Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
5
|
Duguet TB, Soichot J, Kuzyakiv R, Malmström L, Tritten L. Extracellular Vesicle-Contained microRNA of C. elegans as a Tool to Decipher the Molecular Basis of Nematode Parasitism. Front Cell Infect Microbiol 2020; 10:217. [PMID: 32523895 PMCID: PMC7261840 DOI: 10.3389/fcimb.2020.00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Among the fundamental biological processes affected by microRNAs, small regulators of gene expression, a potential role in host-parasite communication is intriguing. We compared the miRNA complement of extracellular vesicles released by the free-living nematode Caenorhabditis elegans in culture to that of other adult parasitic nematodes. Expecting convergent functional roles for secreted miRNAs due to the common parasitic lifestyle of the organisms under investigation, we performed a miRNA sequence analysis as well as target search and pathway enrichment for potential mRNA targets within host immune functions. We found that the parasite miRNA seed sequences were more often identical to those of C. elegans, rather than to those of their hosts. However, we observed that the nematode-secreted miRNA fractions shared more often seed sequences with host miRNAs than those that are not found in the extracellular environment. Development and proliferation of immune cells was predicted to be affected several-fold by nematode miRNA release. In addition, we identified the AGE-RAGE signaling as a convergent targeted pathway by species-specific miRNAs from several parasitic species. We propose a multi-species comparative approach to differentiate those miRNAs that may have critical functions in host modulation, from those that may not. With our simple analysis, we put forward a workflow to study traits of parasitism at the miRNA level. This work will find even more resonance and significance, as an increasing amount of parasite miRNA collections are expected to be produced in the future.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Julien Soichot
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Rostyslav Kuzyakiv
- S3IT, University of Zurich, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lars Malmström
- S3IT, University of Zurich, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Institute for Computational Science, University of Zurich, Zurich, Switzerland.,Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lucienne Tritten
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Jain N, Das B, Mallick B. Restoration of microRNA-197 expression suppresses oncogenicity in fibrosarcoma through negative regulation of RAN. IUBMB Life 2020; 72:1034-1044. [PMID: 32027089 DOI: 10.1002/iub.2240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) act as crucial regulators of biological pathways/processes by reinforcing transcriptional programs and moderating transcripts. Emerging evidences have shown the involvement of dysregulated miRNAs in pathophysiology of human diseases including several cancer types. Recently, miR-197-3p has been reported to play different roles in different cancers; however, its role in fibrosarcoma, a highly aggressive and malignant soft tissue sarcoma originated from the mesenchymal tissues, has not yet been studied. Therefore, this study aims to investigate the possible regulatory roles of miR-197-3p in the oncogenicity of fibrosarcoma. For this, we initially performed qRT-PCR of miR-197-3p, which we found to be downregulated in HT1080 human fibrosarcoma cells compared with IMR90-tert normal fibroblast cells. Subsequently, we performed gain-of-function study by employing several methods such as MTT assay, clonogenic assay, wound healing, flow cytometry cell cycle analysis, and acridine orange staining after transfecting HT1080 cells with miR-197-3p mimic. From these assays, we observed that miR-197-3p significantly inhibits viability, colony forming, and migration ability as well as triggers G2/M phase cell cycle arrest and autophagy in fibrosarcoma cells. To understand the mechanism through which miRNA performs these functions, we predicted its targets using TargetScan and performed pathway enrichment analysis after screening them by their expression in fibrosarcoma. Among the enriched targets, we found RAN (ras-related nuclear protein) to be a crucial target through which miR-197-3p represses tumorigenesis by binding to its 3´ UTR, validated by luciferase reporter assay. The tumor suppressive role of the miRNA was further confirmed by transfecting its mimic in RAN-overexpressed cells which showed significant attenuation in tumorigenic effect of RAN in fibrosarcoma as seen in different assays. Taken together, our study unveiled that miR-197-3p acts as an oncosuppressor in fibrosarcoma through G2/M phase arrest and induction of autophagy, and raises the possibility to act as a novel therapeutic intervention for the malignancy.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Basudeb Das
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
7
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
8
|
Aung T, Asam C, Haerteis S. Ion channels in sarcoma: pathophysiology and treatment options. Pflugers Arch 2019; 471:1163-1171. [PMID: 31377822 DOI: 10.1007/s00424-019-02299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas are characterized by aggressive growth and a high metastasis potentially leading in most cases to a lethal outcome. These malignant tumors of the connective tissue have a high heterogeneity with numerous genetic mutations resulting in more than 100 types of sarcoma that can be grouped into two main kinds: soft tissue sarcoma and bone sarcoma. Sarcomas are often diagnosed at late disease stage, whereas a guaranteed diagnosis of the sarcoma type is fundamental for successful therapy. However, there is no appropriate therapy available. Therefore, the need for new therapies, which prolong survival and improve quality of life, is high. In the last two decades, the role of ion channels in cancer has emerged. Ion channels seem to be an ideal target for anti-tumor therapies. However, different cancer types have their own altered ion channel pattern, and the knowledge about the tumor-associated ion channel expression is fundamental. Here, we focus on the role of different ion channels in sarcoma, their pathophysiology, and possible treatment options.
Collapse
Affiliation(s)
- Thiha Aung
- Abteilung für Plastische, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Claudia Asam
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany
| | - Silke Haerteis
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|