1
|
Chan TS, Lee KL, Hung CS, Chiang HP, Chung CC, Liang YC. ZFP36L1 and ZFP36L2 reduce cyclin D1 expression by decreasing expression of E2F1 and long 3'UTR isoform of CCND1 transcripts. Mol Cell Biochem 2025; 480:1685-1699. [PMID: 39110278 DOI: 10.1007/s11010-024-05087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/01/2024] [Indexed: 02/21/2025]
Abstract
The CCND1 mRNA possesses at least two distinct lengths of the 3'-untranslated region (3'UTR), with the long isoform containing multiple AU-rich elements (AREs). The tandem zinc finger (TZF) domains of human ZFP36 family members have the capacity to bind to AREs and promote mRNA degradation. Our previous study demonstrated that mutations in the TZF domain of ZFP36L1 or ZFP36L2 increased the CCND1 expression. In this study, we investigated whether ZFP36L1 and ZFP36L2 could downregulate the expression of the long 3'UTR isoform of CCND1 mRNA in human colorectal cancer (CRC) cells. Firstly, the Gene Expression Profiling Interactive Analysis 2 database indicated downregulation of ZFP36 and ZFP36L1, while E2F1 and CCND1 were upregulated in human CRC tissues compared to normal colorectal tissues. Overexpression of ZFP36L1 and/or ZFP36L2 in T-REx-293, DLD-1, and HCT116 cells led to a decrease in the total CCND1, long isoform ratio of CCND1 mRNA, and E2F1 expression. Conversely, knockdown of ZFP36L1 and ZFP36L2 in HCT116 cells resulted in an increase in total CCND1, long isoform ratio of CCND1 mRNA, and E2F1 expression. Knockdown of E2F1 decreased CCND1 expression, indicating a potential role for E2F1 in regulating CCND1 expression at the transcriptional level. These findings suggest that ZFP36L1 and ZFP36L2 play a negative role in CCND1 expression. The underlying mechanisms might involve the reduction of E2F1 transactivation at the transcriptional level and the promotion of AREs-mediated decay of the long 3'UTR isoform of CCND1 through posttranscriptional processes.
Collapse
Affiliation(s)
- Tze-Sian Chan
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Pei Chiang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chen Chung
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Aierken Z, Muhetaer M, Lei Z, Abudourousuli A. Expression of CSTF2 in oral squamous cell carcinoma and its relationship with immune infiltration and poor prognosis. FRONTIERS IN ORAL HEALTH 2025; 6:1548829. [PMID: 39989603 PMCID: PMC11842344 DOI: 10.3389/froh.2025.1548829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a prevalent and devastating malignancy of the oral cavity that profoundly affects patient survival and quality of life (QOL). Cleavage Stimulation Factor Subunit 2 (CSTF2) is known to influence tumor development across multiple cancer types. However, its specific association with patient prognosis and immune cell infiltration in OSCC remains insufficiently understood. Methods To assess the expression levels and prognostic implications of CSTF2 in OSCC, comprehensive data were acquired from The Cancer Genome Atlas (TCGA) and subsequently normalized. Immunohistochemical staining of tissue microarrays was performed to analyze CSTF2 expression in the OSCC samples. Differences in CSTF2 expression between OSCC and adjacent non-cancerous samples were evaluated using the Wilcoxon rank-sum test. Functional enrichment analyses have been performed to identify biological pathways and functions associated with CSTF2. The relationship between the infiltration of various immune cells and CSTF2 expression levels was assessed using single-sample gene set enrichment analysis (ssGSEA). Ultimately, the prognostic significance of CSTF2 was evaluated through Kaplan-Meier survival analysis, in conjunction with univariate and multivariate Cox regression analyses, as well as receiver operating characteristic (ROC) curves. Results High CSTF2 expression was observed in OSCC and associated with unfavorable clinicopathological variables, including histological grade and lymphnode neck dissection. Functional enrichment analysis indicated that CSTF2 plays a role in epidermal development and differentiation, immunoglobulin complexes, peptidases and endopeptidase inhibitor activity, and cytochrome P450 metabolic processes. Additionally, the overexpression of CSTF2 exhibited a negative correlation with the infiltration of immature dendritic cells (iDCs), cytotoxic cells, and plasmacytoid dendritic cells (pDCs). Notably, elevated CSTF2 expression is significantly associated with reduced patient outcomes. Conclusion Elevated CSTF2 expression in OSCC is associated with poor prognostic outcomes, highlighting its capacity to function as an innovative prognostic biomarker and a target for therapeutic interventions.
Collapse
Affiliation(s)
- Zumulaiti Aierken
- Department of Stomatology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Muertiza Muhetaer
- Department of Stomatology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Zhang Lei
- Department of Pathology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Ainiwaerjiang Abudourousuli
- Department of Pathology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
- Kashi Prefecture Cancer Research Institute, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| |
Collapse
|
3
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
4
|
Jia X, Shao L, Quan H, Zhong Z, Dong C. Exploring vimentin's role in breast cancer via PICK1 alternative polyadenylation and the miR-615-3p-PICK1 interaction. Biofactors 2025; 51:e2147. [PMID: 39781570 PMCID: PMC11712540 DOI: 10.1002/biof.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025]
Abstract
Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO). These high-throughput analyses aimed to uncover the underlying transcriptional and proteomic alterations associated with VIM's influence on breast cancer cells. RNA-seq and proteomic profiling revealed significant APA in PICK1 following VIM KO, suggesting a novel mechanism by which VIM regulates breast cancer progression. Validation experiments confirmed that VIM KO affects the miR-615-3p-PICK1 axis, with miR-615-3p's regulation of PICK1 being contingent upon the APA of PICK1. These findings highlight the complex interplay between VIM, miR-615-3p, and PICK1 in the regulation of breast cancer cell behavior. This study reveals that vimentin affects the miR-615-3p-PICK1 axis through APA, revealing the key role of VIM in cancer progression. Opened up new avenues for targeted cancer therapy, with a focus on regulating the interaction between APA and miR-615-3p-PICK1.
Collapse
Affiliation(s)
- Xinyan Jia
- College of Basic Medical ScienceJinzhou Medical UniversityJinzhouLiaoningChina
| | - Lujing Shao
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineTongji UniversityShanghaiPeople's Republic of China
| | - Hong Quan
- Department of Breast Surgery, Shanghai East Hospital, Tongji University School of MedicineTongji UniversityShanghaiPeople's Republic of China
| | - Zhixian Zhong
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineTongji UniversityShanghaiPeople's Republic of China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineTongji UniversityShanghaiPeople's Republic of China
- Ji'an Central People's Hospital (Ji'an Hospital of Shanghai East Hospital)Jiangxi ProvinceChina
| |
Collapse
|
5
|
Ou J, Liu H, Park S, Green MR, Zhu LJ. InPAS: An R/Bioconductor Package for Identifying Novel Polyadenylation Sites and Alternative Polyadenylation from Bulk RNA-seq Data. Front Biosci (Schol Ed) 2024; 16:21. [PMID: 39736014 DOI: 10.31083/j.fbs1604021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes. However, RNA sequencing (RNA-seq) technology has revolutionized transcriptome profiling and recent studies have shown that RNA-seq data can be leveraged to identify and quantify APA events. RESULTS To fully capitalize on the exponentially growing RNA-seq data, we developed InPAS (Identification of Novel alternative PolyAdenylation Sites), an R/Bioconductor package for accurate identification of novel and known cleavage and polyadenylation sites (CPSs), as well as quantification of APA from RNA-seq data of various experimental designs. Compared to other APA analysis tools, InPAS offers several important advantages, including the ability to detect both novel proximal and distal CPSs, to fine tune positions of CPSs using a naïve Bayes classifier based on flanking sequence features, and to identify APA events from RNA-seq data of complex experimental designs using linear models. We benchmarked the performance of InPAS and other leading tools using simulated and experimental RNA-seq data with matched 3'-end RNA-seq data. Our results reveal that InPAS frequently outperforms existing tools in terms of precision, sensitivity, and specificity. Furthermore, we demonstrate its scalability and versatility by applying it to large, diverse RNA-seq datasets. CONCLUSIONS InPAS is an efficient and robust tool for identifying and quantifying APA events using readily accessible conventional RNA-seq data. Its versatility opens doors to explore APA regulation across diverse eukaryotic systems with various experimental designs. We believe that InPAS will drive APA research forward, deepening our understanding of its role in regulating gene expression, and potentially leading to the discovery of biomarkers or therapeutics for diseases.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Regeneration Center, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sungmi Park
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Ku J, Lee K, Ku D, Kim S, Lee J, Bang H, Kim N, Do H, Lee H, Lim C, Han J, Lee YS, Kim Y. Alternative polyadenylation determines the functional landscape of inverted Alu repeats. Mol Cell 2024; 84:1062-1077.e9. [PMID: 38309276 DOI: 10.1016/j.molcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.
Collapse
Affiliation(s)
- Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongbin Lee
- Research Center for Cellular Identity, KAIST, Daejeon 34141, Korea
| | - Hyunwoo Bang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Namwook Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Hyeonjung Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Chunghun Lim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea; BioMedical Research Center, KAIST, Daejeon 34141, Korea
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Zhang P, Xue B, Yang H, Zhang L. Transcriptome Responses to Different Salinity Conditions in Litoditis marina, Revealed by Long-Read Sequencing. Genes (Basel) 2024; 15:317. [PMID: 38540376 PMCID: PMC10970011 DOI: 10.3390/genes15030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
The marine nematode Litoditis marina is widely distributed in intertidal zones around the globe, yet the mechanisms underlying its broad adaptation to salinity remain elusive. In this study, we applied ONT long-read sequencing technology to unravel the transcriptome responses to different salinity conditions in L. marina. Through ONT sequencing under 3‱, 30‱ and 60‱ salinity environments, we obtained 131.78 G clean data and 26,647 non-redundant long-read transcripts, including 6464 novel transcripts. The DEGs obtained from the current ONT lrRNA-seq were highly correlated with those identified in our previously reported Illumina short-read RNA sequencing data. When we compared the 30‱ to the 3‱ salinity condition, we found that GO terms such as oxidoreductase activity, cation transmembrane transport and ion transmembrane transport were shared between the ONT lrRNA-seq and Illumina data. Similarly, GO terms including extracellular space, structural constituents of cuticle, substrate-specific channel activity, ion transport and substrate-specific transmembrane transporter activity were shared between the ONT and Illumina data under 60‱ compared to 30‱ salinity. In addition, we found that 79 genes significantly increased, while 119 genes significantly decreased, as the salinity increased. Furthermore, through the GO enrichment analysis of 214 genes containing DAS, in 30‱ compared to 3‱ salinity, we found that GO terms such as cellular component assembly and coenzyme biosynthetic process were enriched. Additionally, we observed that GO terms such as cellular component assembly and coenzyme biosynthetic process were also enriched in 60‱ compared to 30‱ salinity. Moreover, we found that 86, 125, and 81 genes that contained DAS were also DEGs, in comparisons between 30‱ and 3‱, 60‱ and 30‱, and 60‱ and 3‱ salinity, respectively. In addition, we demonstrated the landscape of alternative polyadenylation in marine nematode under different salinity conditions This report provides several novel insights for the further study of the mechanisms by which euryhalinity formed and evolved, and it might also contribute to the investigation of salinity dynamics induced by global climate change.
Collapse
Affiliation(s)
- Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
9
|
Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, Hao S, Zhou H, Li H. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle 2023; 22:2622-2636. [PMID: 38166492 PMCID: PMC10936678 DOI: 10.1080/15384101.2023.2299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
A protein called cleavage-stimulating factor subunit 2 (CSTF2, additionally called CSTF-64) binds RNA and is needed for the cleavage and polyadenylation of mRNA. CSTF2 is an important component subunit of the cleavage stimulating factor (CSTF), which is located on the X chromosome and encodes 557 amino acids. There is compelling evidence linking elevated CSTF2 expression to the pathological advancement of cancer and on its impact on the clinical aspects of the disease. The progression of cancers, including hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, and pancreatic cancer, is correlated with the upregulation of CSTF2 expression. This review provides a fresh perspective on the investigation of the associations between CSTF2 and various malignancies and highlights current studies on the regulation of CSTF2. In particular, the mechanism of action and potential clinical applications of CSTF2 in cancer suggest that CSTF2 can serve as a new biomarker and individualized treatment target for a variety of cancer types.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Youru Liu
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Yuanyuan Xu
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xuefeng Wang
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Shuli Hao
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Huan Zhou
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
10
|
Zhang W, Hu Y, Qian M, Mao L, Yuan Y, Xu H, Liu Y, Qiu A, Zhou Y, Dong Y, Wu Y, Chen Q, Tao X, Tian T, Zhang L, Cui J, Chu M. A novel APA-based prognostic signature may predict the prognosis of lung adenocarcinoma in an East Asian population. iScience 2023; 26:108068. [PMID: 37860689 PMCID: PMC10583048 DOI: 10.1016/j.isci.2023.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The role of alternative polyadenylation (APA) in tumor development is becoming increasingly evident, but the impact of APA events on the prognosis of LUAD patients is unclear. Therefore, in the present study, we aimed to analyze specific APA events in LUAD to identify novel prognostic biomarkers for LUAD. We first identified prognostic candidate genes for LUAD associated with APA events and validated them in both the East Asian and the USA cohorts, finding that five genes (DCUN1D5, PSMC4, TFAM, THRA, and TMEM100) were of prognostic significance in both populations. Based on this, an APA-based prognostic signature was constructed for the East Asian population. The predictive accuracy of the prognostic signature was further evaluated by the time-dependent ROC, with 1-, 2-, and 3-year AUCs of 0.86, 0.81, and 0.71, respectively. This study may provide new markers for individualized diagnosis and prognostic assessment of LUAD and potential targets for precision treatment.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Hu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Min Qian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liping Mao
- Department of Oncology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Yanqiong Yuan
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Huang K, Zhang Y, Shi X, Yin Z, Zhao W, Huang L, Wang F, Zhou X. Cell-type-specific alternative polyadenylation promotes oncogenic gene expression in non-small cell lung cancer progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:816-831. [PMID: 37675185 PMCID: PMC10477688 DOI: 10.1016/j.omtn.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Disrupted alternative polyadenylation (APA) is frequently involved in tumorigenesis and cancer progression by regulating the gene expression of oncogenes and tumor suppressors. However, limited knowledge of tumor-type- and cell-type-specific APA events may lead to novel APA events and their functions being overlooked. Here, we compared APA events across different cell types in non-small cell lung cancer (NSCLC) and normal tissues and identified functionally related APA events in NSCLC. We found several cell-specific 3'-UTR alterations that regulate gene expression changes showed prognostic value in NSCLC. We further investigated the function of APA-mediated 3'-UTR shortening through loss of microRNA (miRNA)-binding sites, and we identified and experimentally validated several oncogene-miRNA-tumor suppressor axes. According to our analyses, we found SPARC as an APA-regulated oncogene in cancer-associated fibroblasts in NSCLC. Knockdown of SPARC attenuates lung cancer cell invasion and metastasis. Moreover, we found high SPARC expression associated with resistance to several drugs except cisplatin. NSCLC patients with high SPARC expression could benefit more compared to low-SPARC-expression patients with cisplatin treatment. Overall, our comprehensive analysis of cell-specific APA events shed light on the regulatory mechanism of cell-specific oncogenes and provided opportunities for combination of APA-regulated therapeutic target and cell-specific therapy development.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- West China Biomedical Big Data Centre, West China Hospital of Sichuan University, Chengdu 610041, China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xiaorui Shi
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqin Yin
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fu Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, Shaanxi 712046, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
13
|
Qiu A, Xu H, Mao L, Xu B, Fu X, Cheng J, Zhao R, Cheng Z, Liu X, Xu J, Zhou Y, Dong Y, Tian T, Tian G, Chu M. A Novel apaQTL-SNP for the Modification of Non-Small-Cell Lung Cancer Susceptibility across Histological Subtypes. Cancers (Basel) 2022; 14:cancers14215309. [PMID: 36358727 PMCID: PMC9658938 DOI: 10.3390/cancers14215309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Alternative polyadenylation (APA) events may be modulated by single nucleotide polymorphisms (SNPs). Therefore, this study aims to evaluate the association between APA quantitative trait loci (apaQTLs)-related SNPs (apaQTL-SNPs) and non-small-cell lung cancer (NSCLC) risk. Methods: APA-related genes associated with NSCLC (LUAD and LUSC) were first identified, and the respective apaQTL-SNPs of those genes were selected. Then, a two-phase case-control study was performed to evaluate the association between candidate apaQTL-SNPs and NSCLC risk. Results: A total of 7 LUAD- and 21 LUSC-associated apaQTL-SNPs were selected. In the first phase, the apaQTL-SNP rs10138506 was significantly associated with LUAD risk (p < 0.05), whereas the other two apaQTL-SNPs (rs1130698 and rs1130719) were significantly associated with LUSC risk (p < 0.05). In the second phase, the variant G allele of rs10138506 was still significantly associated with an increased risk of LUAD (OR = 1.42, 95%CI = 1.02−1.98, p = 0.038). Functional annotation indicated that the variant G allele of rs10138506 was significantly associated with a higher PDUI value of CHURC1. Meanwhile, 3′RACE experiments verified the presence of two poly(A) sites (proximal and distal) in CHURC1, while qRT-PCR results indicated that different genotypes of rs1127968 which, in perfect LD with rs10138506, can mediate changes in the lengths of the 3′UTR of CHURC1 isoforms. Conclusion: The variant G allele of rs10138506 in CHURC1 was correlated with a longer 3′UTR of CHURC1 mRNA and an increased LUAD risk. Further studies should evaluate the interaction between rs10138506 and different 3′UTR lengths of CHURC1 that regulate LUAD development.
Collapse
Affiliation(s)
- Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Liping Mao
- Department of Oncology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong 226001, China
| | - Buyun Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoyu Fu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jingwen Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People’s Hospital of Yangzhou, Yangzhou 225202, China
| | - Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoxuan Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jingsheng Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital of Yangzhou, Yangzhou 225202, China
- Correspondence: (M.C.); (G.T.)
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China
- Correspondence: (M.C.); (G.T.)
| |
Collapse
|
14
|
Zhang W, Wan Y, Zhang Y, Liu Q, Zhu X. CSTF2 Acts as a Prognostic Marker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Cancer Manag Res 2022; 14:2691-2709. [PMID: 36117731 PMCID: PMC9481280 DOI: 10.2147/cmar.s359545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cleavage stimulation factor 2 (CSTF2) encodes a nuclear protein that is implicated in the development of various cancers. However, the role of CSTF2 in hepatocellular carcinoma (HCC) has not been understood. This study aims to explore the function of CSTF2 in HCC. Methods The expression, diagnostic capability, prognostic value, and immune cell effect of CSTF2 in HCC were explored using various databases. The expression level of CSTF2 were validated in our cell lines. The effect of CSTF2 on hepatocarcinogenesis was explored by CSTF2 silencing. Results CSTF2 expression was significantly elevated in HCC and correlated with multiple clinicopathological characteristics. CSTF2 exhibited good diagnostic capability in discriminating HCC samples from nontumorous samples. High CSTF2 expression was significantly related to poor overall survival. Univariate and multivariate Cox regression analyses suggested that CSTF2 expression was an independent risk factor for HCC. These results were validated in ICGC cohorts. In addition, the nomogram based on CSTF2 showed better predictive performance than the AJCC staging system in TCGA and ICGC cohorts. Functional enrichment analysis revealed that CSTF2-related genes were involved in DNA/RNA processing and the cell cycle. In addition, we found that CSTF2 expression was closely related to the levels of various infiltrating immune cells, especially neutrophils. Moreover, some immune checkpoints had positive relationships with CSTF2 expression. CSTF2 silencing inhibited proliferation, invasion and migration, and promoted apoptosis in HepG2 cells. Western blotting analysis revealed that CSTF2 silencing inactivated the Wnt/β-catenin signaling pathway. Conclusion High CSTF2 expression not only correlates with unfavorable outcomes but also affects immune cell infiltration and immune checkpoint expression in HCC. CSTF2 silencing can alleviate the malignant phenotypes of hepatic cancer cell by inactivating the Wnt/β-catenin signaling pathway. These results indicate that CSTF2 can serve as a promising prognostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Wang Zhang
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yipeng Wan
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Zhang
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Qi Liu
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Zhu
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
15
|
Alternative polyadenylation writer CSTF2 forms a positive loop with FGF2 to promote tubular epithelial-mesenchymal transition and renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166541. [PMID: 36113752 DOI: 10.1016/j.bbadis.2022.166541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
Abstract
Effective therapies for renal fibrosis, the common endpoint for most kidney diseases, are lacking. We previously reported that alternative polyadenylation (APA) drives transition from acute kidney injury to chronic kidney disease, suggesting a potential role for APA in renal fibrogenesis. Here, we found that among canonical APA writers, CSTF2 expression was upregulated in tubular epithelial cells (TEC) of fibrotic kidneys. CSTF2 was also identified as a TGF-β-inducible pro-fibrotic gene. Further analysis revealed that CSTF2 promoted epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) overproduction in TEC by inducing 3'UTR shortening and upregulation of the expression of basic fibroblast growth factor 2 (FGF2). Additionally, 3'UTR shortening stabilised FGF2 mRNA through miRNA evasion. Interestingly, FGF2 enhanced CSTF2 expression, leading to the forming of a CSTF2-FGF2 positive loop in TEC. Furthermore, CSTF2 knockdown alleviated unilateral ureteral obstruction-induced renal fibrosis in vivo. Finally, we developed a CSTF2-targeted antisense oligonucleotide (ASO) and validated its effectiveness in vitro. These results indicate that the expression of the APA writer, CSTF2, is upregulated by TGF-β and CSTF2 facilitates TGF-β-induced FGF2 overexpression, forming a TGF-β-CSTF2-FGF2 pro-fibrotic axis in TEC. CSTF2 is a potentially promising target for renal fibrosis that does not directly disrupt TGF-β.
Collapse
|
16
|
Wang H, Jiang Z. Identification and Verification of an Alternative Polyadenylation-Related lncRNA Prognostic Signature for Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2164229. [PMID: 39279987 PMCID: PMC11401696 DOI: 10.1155/2022/2164229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 09/18/2024]
Abstract
Due to the high mortality and modality of glioma, it was urgently needed to develop a glioma prognostic assessment system. Previous studies demonstrated that alternative polyadenylation- (APA-) related genes are important in immune response and oncogenesis. mRNA and lncRNA expression information of glioma samples were acquired from CGGA and TCGA databases, and lncRNAs associated with APA were selected through correlation analysis. The prognosis model of APA-related lncRNAs was built by the univariate Cox, random forest, and univariate Cox regression analyses. Glioma samples were assigned into high- and low-risk groups. Independence and effectiveness of the prognostic model were evaluated by Kaplan-Meier analysis, ROC curve, and Cox regression analyses. GO, KEGG enrichment, and GSEA analyses showed that the mainly involved signaling pathways were enriched in cellular immunity and immune signal transduction. We further analyzed expression differences of negative immune regulatory genes and immune cell infiltration degree between two groups. Immune checkpoints CTLA4 and LAG3 and immune suppressors TGFB, IL10, NOS3, and IDO1 and immune cell infiltration were notably upregulated in the high-risk group. The PD1/PDL1 expression was significantly correlated with risk score, showing that the prognostic model of APA-related lncRNA could effectively assess the tumor immune suppression. In conclusion, we established a risk assessment model of APA-related lncRNA in glioma, which could effectively evaluate prognosis of patients with glioma and tumor immune suppression and could provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou City, Zhejiang Province 31400, China
| | - ZhiJun Jiang
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou City, Zhejiang Province 31400, China
| |
Collapse
|
17
|
Saglam BS, Kanli A, Yanar S, Kasap M, Akpinar G. Investigation of the effect of meclofenamic acid on the proteome of LNCaP cells reveals changes in alternative polyadenylation and splicing machinery. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:190. [PMID: 36071279 DOI: 10.1007/s12032-022-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common type of cancer among men, and there is still no definitively effective drug treatment. Thus, the search for novel drug agents that may be used for the effective treatment continues. Meclofenamic acid (MA), a non-steroidal anti-inflammatory drug, with anti-tumor effects in various types of cancers was used to investigate its effects on LNCaP cells, a prostate cancer cell line, at the proteome level. The cells were treated with 80 µM MA for 24 h and a comparative proteomic analysis was performed with their untreated control cells. Proteins were extracted from the cells and then were subjected to two-dimensional gel electrophoresis. Protein spots displaying changes in their regulation ratios for more than two-fold were excised from the gels and identified with MALDI-TOF/TOF mass spectrometry. Bioinformatics analysis of the differentially regulated proteins that we identified showed that they were all associated with and took part in related pathways. Glycolytic pathway, cytoskeletal formation, transport activity, protein metabolism, and most notably an mRNA processing pathway were affected by the MA treatment. In addition to presenting a detailed information for what is happening inside the cells upon MA treatment, the proteins affected by MA treatment hold the potential to be novel targets for prostate cancer treatment provided that further in vivo experiments are carried out.
Collapse
Affiliation(s)
- Busra Sahinoz Saglam
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Aylin Kanli
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey.
| | - Sevinc Yanar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Serdivan, Sakarya, Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
18
|
Zhang MH, Liu J. Cleavage stimulation factor 2 promotes malignant progression of liver hepatocellular carcinoma by activating phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin pathway. Bioengineered 2022; 13:10047-10060. [PMID: 35412944 PMCID: PMC9161829 DOI: 10.1080/21655979.2022.2063100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is the most common type, comprising 75-85% of all liver malignancies. We investigated the roles of cleavage stimulation factor 2 (CSTF2) in LIHC and explored the underlying mechanisms. CSTF2 expression and its association with LIHC patient survival probability were analyzed with The Cancer Genome Atlas. CSTF2 expression in LIHC cells was assessed using western blot and quantitative real-time PCR. Alterations in CSTF2 expression were induced by cell transfection. Cell colony formation, apoptosis, proliferation, invasion, and migration were assessed using colony formation, flow cytometry, 5-ethynyl-2'-deoxyuridine, and transwell assays. Pathway enrichment analysis was performed using gene set enrichment analysis (GSEA). The expression of apoptosis-, metastasis-, and pathway-associated factors was determined via western blot. The pathway rescue assay was further performed using 740Y-P or Wortmannin. CSTF2 upregulation was observed in LIHC tissues and cells. Patients with high CSTF2 expression had a lower probability of overall survival. CSTF2 overexpression enhanced colony formation, proliferation, invasion and migration, while repressing apoptosis in LIHC cells. GSEA revealed that CSTF2 was mainly enriched in the phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Western blot analysis proved that CSTF2 overexpression activated this pathway. CSTF2 knockdown yielded the opposite effects. 740Y-P, a PI3K activator, reversed the CSTF2 knockdown-triggered effects on cell proliferation, apoptosis, invasion, and migration. Moreover, Wortmannin, a PI3K inhibitor, also reversed the CSTF2 overexpression-induced effects on cell proliferation, apoptosis, invasion, and migration. These results indicated that CSTF2 overexpression might exacerbate the malignant phenotypes of LIHC cells via activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
19
|
Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022; 816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
The eukaryotic transcriptome undergoes various post-transcriptional modifications which assists gene expression. Polyadenylation is a molecular process occurring at the 3'-end of the RNA molecule which involves the poly(A) polymerase attaching adenine monophosphate molecules in a chain-like fashion to assemble a poly(A) tail. Multiple RNA isoforms are produced with differing 3'-UTR and exonic compositions through alternative polyadenylation (APA) which enhances the diversification of alternatively spliced mRNA transcripts. To study polyadenylation patterns, novel methods have been developed using short-read and long-read sequencing technologies to analyse the 3'-ends of the transcript. Recent studies have identified unique polyadenylation patterns in different cellular functions, including oncogenic activity, which could prove valuable in the understanding of medical genetics, particularly in the discovery of biomarkers in diseased states. We present a review of current literature reporting on polyadenylation and the biological relevance in the mammalian transcriptome, with a focus on the human transcriptome. Additionally, we have explored the various methods available to detect polyadenylation patterns using second and third generation sequencing technologies.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Chen Y, Chen D, Wang Q, Xu Y, Huang X, Haglund F, Su H. Immunological Classification of Pancreatic Carcinomas to Identify Immune Index and Provide a Strategy for Patient Stratification. Front Immunol 2022; 12:719105. [PMID: 35111149 PMCID: PMC8801451 DOI: 10.3389/fimmu.2021.719105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cancer immunotherapy has produced significant positive clinical effects in a variety of tumor types. However, pancreatic ductal adenocarcinoma (PDAC) is widely considered to be a "cold" cancer with poor immunogenicity. Our aim is to determine the detailed immune features of PDAC to seek new treatment strategies. Methods The immune cell abundance of PDAC patients was evaluated with the single-sample gene set enrichment analysis (ssGSEA) using 119 immune gene signatures. Based on these data, patients were classified into different immune subtypes (ISs) according to immune gene signatures. We analyzed their response patterns to immunotherapy in the datasets, then established an immune index to reflect the different degrees of immune infiltration through linear discriminant analysis (LDA). Finally, potential prognostic markers associated with the immune index were identified based on weighted correlation network analysis (WGCNA) that was functionally validated in vitro. Results Three ISs were identified in PDAC, of which IS3 had the best prognosis across all three cohorts. The different expressions of immune profiles among the three ISs indicated a distinct responsiveness to immunotherapies in PDAC subtypes. By calculating the immune index, we found that the IS3 represented higher immune infiltration, while IS1 represented lower immune infiltration. Among the investigated signatures, we identified ZNF185, FANCG, and CSTF2 as risk factors associated with immune index that could potentially facilitate diagnosis and could be therapeutic target markers in PDAC patients. Conclusions Our findings identified immunologic subtypes of PDAC with distinct prognostic implications, which allowed us to establish an immune index to represent the immune infiltration in each subtype. These results show the importance of continuing investigation of immunotherapy and will allow clinical workers to personalized treatment more effectively in PDAC patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Didi Chen
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yajing Xu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Huafang Su
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Lackey L, Coria A, Ghosh AJ, Grayeski P, Hatfield A, Shankar V, Platig J, Xu Z, Ramos SBV, Silverman EK, Ortega VE, Cho MH, Hersh CP, Hobbs BD, Castaldi P, Laederach A. Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease. PLoS Genet 2021; 17:e1009912. [PMID: 34784346 PMCID: PMC8631626 DOI: 10.1371/journal.pgen.1009912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/30/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.1-fold increase (p = 2.5x10-6) in the use of a distal poly-adenylation site in primary lung tissue RNA-seq in 82 COPD cases when compared to 64 controls and replicate this in an independent study of 376 COPD and 267 controls. This alternative polyadenylation event involves two sites, a proximal and distal site, 61 and 1683 nucleotides downstream of the A1AT stop codon. To characterize this event, we measured the distal ratio in human primary tissue short read RNA-seq data and corroborated our results with long read RNA-seq data. Integrating these results with 3' end RNA-seq and nanoluciferase reporter assay experiments we show that use of the distal site yields mRNA transcripts with over 50-fold decreased translation efficiency and A1AT expression. We identified seven RNA binding proteins using enhanced CrossLinking and ImmunoPrecipitation precipitation (eCLIP) with one or more binding sites in the SERPINA1 3' UTR. We combined these data with measurements of the distal ratio in shRNA knockdown experiments, nuclear and cytoplasmic fractionation, and chemical RNA structure probing. We identify Quaking Homolog (QKI) as a modulator of SERPINA1 mRNA translation and confirm the role of QKI in SERPINA1 translation with luciferase reporter assays. Analysis of single-cell RNA-seq showed differences in the distribution of the SERPINA1 distal ratio among hepatocytes, macrophages, αβ-Tcells and plasma cells in the liver. Alveolar Type 1,2, dendritic cells and macrophages also vary in their distal ratio in the lung. Our work reveals a complex post-transcriptional mechanism that regulates alternative polyadenylation and A1AT expression in COPD.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Auyon J. Ghosh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phil Grayeski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Abigail Hatfield
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Vijay Shankar
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvia B. V. Ramos
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor E. Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Internal Medicine and Primary Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
22
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
23
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
24
|
Dharmalingam P, Mahalingam R, Yalamanchili HK, Weng T, Karmouty-Quintana H, Guha A, A Thandavarayan R. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease. J Cell Physiol 2021; 237:149-160. [PMID: 34378793 DOI: 10.1002/jcp.30549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
In the messenger RNA (mRNA) maturation process, the 3'-end of pre-mRNA is cleaved and a poly(A) sequence is added, this is an important determinant of mRNA stability and its cellular functions. More than 60%-70% of human genes have three or more polyadenylation (APA) sites and can be cleaved at different sites, generating mRNA transcripts of varying lengths. This phenomenon is termed as alternative cleavage and polyadenylation (APA) and it plays role in key biological processes like gene regulation, cell proliferation, senescence, and also in various human diseases. Loss of regulatory microRNA binding sites and interactions with RNA-binding proteins leading to APA are largely investigated in human diseases. However, the functions of the core APA machinery and related factors during disease conditions remain largely unknown. In this review, we discuss the roles of polyadenylation machinery in relation to brain disease, cardiac failure, pulmonary fibrosis, cancer, infectious conditions, and other human diseases. Collectively, we believe this review will be a useful avenue for understanding the emerging role of APA in the pathobiology of various human diseases.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Rajasekaran Mahalingam
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics - Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | | |
Collapse
|
25
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|