1
|
Hirai R, Kinugasa H, Yamamoto S, Ako S, Tsutsumi K, Abe M, Miyahara K, Nakagawa M, Otsuka M. Methylation analysis of DCC gene in saliva samples is an efficient method for non-invasive detection of superficial hypopharyngeal cancer. Br J Cancer 2024; 130:1725-1731. [PMID: 38538728 PMCID: PMC11091138 DOI: 10.1038/s41416-024-02654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND Advances in upper gastrointestinal endoscopic technology have enabled early detection and treatment of hypopharyngeal cancer. However, in-depth pharyngeal observations require sedation and are invasive. It is important to establish a minimally invasive and simple evaluation method to identify high-risk patients. METHODS Eighty-seven patients with superficial hypopharyngeal cancer and 51 healthy controls were recruited. We assessed the methylation status of DCC, PTGDR1, EDNRB, and ECAD, in tissue and saliva samples and verified the diagnostic accuracy by methylation analyses of their promoter regions using quantitative methylation-specific PCR. RESULTS Significant differences between cancer and their surrounding non-cancerous tissues were observed in the methylation values of DCC (p = 0.003), EDNRB (p = 0.001), and ECAD (p = 0.043). Using receiver operating characteristic analyses of the methylation values in saliva samples, DCC showed the highest area under the curve values for the detection of superficial hypopharyngeal cancer (0.917, 95% confidence interval = 0.864-0.970), compared with those for EDNRB (0.680) and ECAD (0.639). When the cutoff for the methylation values of DCC was set at ≥0.163, the sensitivity to detect hypopharyngeal cancer was 82.8% and the specificity was 90.2%. CONCLUSIONS DCC methylation in saliva samples could be a non-invasive and efficient tool for early detection of hypopharyngeal cancer in high-risk patients.
Collapse
Affiliation(s)
- Ryosuke Hirai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan.
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Soichiro Ako
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Makoto Abe
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Koji Miyahara
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Masahiro Nakagawa
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Zhang Q, Wang F, Huang Y, Gao P, Wang N, Tian H, Chen A, Li Y, Wang F. PGD2/PTGDR2 Signal Affects the Viability, Invasion, Apoptosis, and Stemness of Gastric Cancer Stem Cells and Prevents the Progression of Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:933-946. [PMID: 37526190 DOI: 10.2174/1386207326666230731103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Prostaglandin D2 (PGD2) has been shown to restrict the occurrence and development of multiple cancers; nevertheless, its underlying molecular mechanism has not been fully elucidated. The present study investigated the effect of PGD2 on the biological function of the enriched gastric cancer stem cells (GCSCs), as well as its underlying molecular mechanism, to provide a theoretical basis and potential therapeutic drugs for gastric cancer (GC) treatment. METHODS The plasma PGD2 levels were detected by Enzyme-linked immunosorbent assay (ELISA). Silencing of lipocalin prostaglandin D synthetases (L-PTGDS) and prostaglandin D2 receptor 2 (PTGDR2) was carried out in GCSCs from SGC-7901 and HGC-27 cell lines. Cell Counting Kit-8, transwell, flow cytometry, and western blotting assays were used to determine cell viability, invasion, apoptosis, and stemness of GCSCs. In vivo xenograft models were used to assess tumor growth. RESULTS Clinically, it was found that the plasma PGD2 level decreased significantly in patients with GC. PGD2 suppressed viability, invasion, and stemness and increased the apoptosis of GCSCs. Downregulating L-PTGDS and PTGDR2 promoted viability, invasion, and stemness and reduced the apoptosis of GCSCs. Moreover, the inhibition of GCSCs induced by PGD2 was eliminated by downregulating the expression of PTGDR2. The results of in vivo experiments were consistent with those of in vitro experiments. CONCLUSION Our data suggest that PGD2 may be an important marker and potential therapeutic target in the clinical management of GC. L-PTGDS/PTGDR2 may be one of the critical targets for GC therapy. The PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of GCSCs and prevents the progression of GC.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Feifan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Peiyao Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Na Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Fengchao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Yanar K, Atayik MC, Horozoğlu C, Demirkol Ş, Simsek B, Verim A, Küçükhüseyin Ö, Aydın S, Yaylım İ, Çakatay U. Significance of Intercellular adhesion molecule-1 Lys496Glu gene polimorphism on plasma redox status regulation in laryngeal carcinoma. J Cancer Res Ther 2023; 19:1781-1787. [PMID: 38376278 DOI: 10.4103/jcrt.jcrt_1081_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Intercellular adhesion molecule-1 (ICAM-1) is a surface glycoprotein important for tumor invasion and angiogenesis. The present research is conducted to investigate whether specific gene polymorphism of ICAM-1 K469E (rs5498) and plasma redox status could be associated with laryngeal cancer (LC) development. Since there is no clear evidence which investigates the relationship between ICAM-1 polymorphism and ROS-mediated plasma protein oxidation in LC, our study is the first significant contribution for investigating the relationship. METHODS The study covered patients with primary LC and their age-matched healthy control subjects. Evaluation of ICAM-1 K469E (rs5498) gene polymorphism was performed by polymerase chain reaction-restriction fragment length polymorphism. Plasma redox status was assessed with spectrophotometric methods. RESULTS In the current paper, we found that LC patients with GG genotype had a decreasing trend for the plasma oxidative damage biomarker levels when compared with all allele genotypes (AA and AG). CONCLUSION We concluded that G allele of the ICAM-1 K469E gene plays a significant role in the optimal regulation of plasma redox homeostasis in patients with LC.
Collapse
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Can Atayik
- Medical Program, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cem Horozoğlu
- Department of Medical Services and Techniques, Istanbul Gelişim University, Istanbul, Turkey
| | - Şeyda Demirkol
- Vocational School of Health Services, Biruni University, Istanbul, Turkey
| | - Bahadir Simsek
- Center for Coronary Artery Disease Minneapolis Heart Institute Foundation Minneapolis United States
| | - Aysegul Verim
- Department of Otorhinolaryngology/Head and Neck Surgery, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Özlem Küçükhüseyin
- Department of Molecular Medicine, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Seval Aydın
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
4
|
Prostanoid Signaling in Cancers: Expression and Regulation Patterns of Enzymes and Receptors. BIOLOGY 2022; 11:biology11040590. [PMID: 35453789 PMCID: PMC9029281 DOI: 10.3390/biology11040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient’s overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.
Collapse
|
5
|
Misawa K, Yamada S, Mima M, Nakagawa T, Kurokawa T, Imai A, Mochizuki D, Shinmura D, Yamada T, Kita J, Ishikawa R, Yamaguchi Y, Misawa Y, Kanazawa T, Kawasaki H, Mineta H. Long interspersed nuclear element 1 hypomethylation has novel prognostic value and potential utility in liquid biopsy for oral cavity cancer. Biomark Res 2020; 8:53. [PMID: 33110605 PMCID: PMC7585304 DOI: 10.1186/s40364-020-00235-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background New biomarkers are urgently needed to improve personalized treatment approaches for head and neck squamous cell carcinoma (HNSCC). Global DNA hypomethylation has wide-ranging functions in multistep carcinogenesis, and the hypomethylation of long interspersed nucleotide element-1 (LINE-1) is related to increased retrotransposon activity and induced genome instability. However, little information is available regarding LINE-1 hypomethylation and its prognostic implications in HNSCC. Methods In this study, we analyzed LINE-1 hypomethylation levels in a well-characterized dataset of 317 primary HNSCC tissues and 225 matched pairs of normal mucosa tissues, along with five oral cavity cancer (OCC) circulating tumor DNA (ctDNA) samples using quantitative real-time methylation and unmethylation PCR. The analysis was performed according to various clinical characteristics and prognostic implications. Results The results demonstrated that LINE-1 hypomethylation levels were significantly higher in the HNSCC tissues than in corresponding normal tissues from the same individuals (P < 0.001). Univariate analysis revealed that high levels of LINE-1 hypomethylation were correlated with poor disease-free survival (DFS; log-rank test, P = 0.038), whereas multivariate analysis demonstrated that they were significant independent prognostic factor for DFS (hazard ratio: 2.10, 95% confidence interval: 1.02–4.36; P = 0.045). Moreover, samples with high LINE-1 hypomethylation levels exhibited the greatest decrease in 5-hydroxymethylcytosine (5-hmC) levels and increase in tumor-suppressor gene methylation index (P = 0.006 and P < 0.001, respectively). Further, ctDNA studies also showed that LINE-1 hypomethylation had high predictive ability in OCC. Conclusions LINE-1 hypomethylation is associated with a higher risk of early OCC relapse, and is hence, a potential predictive biomarker for OCC. Furthermore, 5-hmC levels also exhibited predictive potential in OCC, based on their inverse correlation with LINE-1 hypomethylation levels. LINE-1 hypomethylation analysis, therefore, has applications in determining patient prognosis and real-time surveillance of disease recurrence, and could serve as an alternative method for OCC screening. Supplementary information Supplementary information accompanies this paper at 10.1186/s40364-020-00235-y.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Satoshi Yamada
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Masato Mima
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Imai
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Daiki Mochizuki
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Daichi Shinmura
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Taiki Yamada
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Junya Kita
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Ryuji Ishikawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Yuki Yamaguchi
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Yuki Misawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Takeharu Kanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Jichi Medical University, Shimotsuke, Tochigi Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| |
Collapse
|