1
|
Shi Y, Liu H, Chen Y. Elevated isoleucine may be a protective factor for primary hypertension: A pooled causal effect study. Medicine (Baltimore) 2025; 104:e41651. [PMID: 40020104 PMCID: PMC11875580 DOI: 10.1097/md.0000000000041651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Hypertension continues to pose a huge burden to global public health. Abnormal metabolism not only serves as a risk factor for hypertension but also acts as a driving force in its aggravation. However, there remains a lack of large-scale causal demonstration based on extensive samples. Our study aims to investigate the causal relationship between metabolism and primary hypertension (PH) using Mendelian randomization analysis. We used genome-wide association studies instrumental variables for Mendelian randomization association analysis integrating the diagnosis results of PH in 3 populations from East Asia, the Middle East, and Africa with serum metabolites and metabolite ratios. This allowed us to identify predictive metabolites and metabolic pathways for diagnosing or treating PH. Inverse-variance weighting was the main model for establishing causal associations. In addition horizontal pleiotropy test, linkage disequilibrium test, and sensitivity analysis were employed to test the explanatory power of instrumental variables. A total of 10,922 cases of PH and 8299 cases of metabolomics detection cohorts were included in the study. In East Asian, Middle Eastern, and African populations, we found 36, 57, and 40 known metabolites respectively strongly associated with PH (P < .05). Cross-section and meta-analysis of these strongly correlated metabolites across the 3 ethnic groups revealed 7 common metabolites. Notably, elevated isoleucine (odds ratio = 0.74, 95% confidence interval: 0.56-0.96) was demonstrated as a potential protective factor against PH across 3 ethnic groups. The metabolites associated with PH have certain polymorphisms in different populations. Isoleucine may be a promising biomarker for PH diagnosis or treatment, but more clinical validation is needed.
Collapse
Affiliation(s)
- Ying Shi
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hairun Liu
- Department of Cognitive and Sleep, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yi Chen
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
2
|
Ntsoane T, Nemukondeni N, Nemadodzi LE. A Systematic Review: Assessment of the Metabolomic Profile and Anti-Nutritional Factors of Cannabis sativa as a Feed Additive for Ruminants. Metabolites 2024; 14:712. [PMID: 39728493 DOI: 10.3390/metabo14120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Cannabis sativa is a high-value crop that can be cultivated for ruminant's feed and medicinal purposes. The demand for Cannabis and Cannabis products has increased since the beginning of 21st century. Objectives: The increase in the production cost of high-protein feeds such as lucerne has led to an urgent need to investigate alternative high-protein sources. Methods: Cannabis has been identified as an alternative to lucerne due to its high protein content. Results: However, the cultivation and uses of Cannabis and its by-products in South Africa is limited due to the strict legislation. The metabolites and nutritional value of Cannabis are influenced by growing conditions and soil type. Furthermore, the available literature has shown that Cannabis contains anti-nutritional factors that may affect feed intake or bioavailability and digestibility. Conclusions: Therefore, it is crucial to employ a processing method that can reduce anti-nutritional factors to promote the feed intake and growth rate of sheep. Fermentation, as a processing method, can reduce anti-nutritional factors found in Cannabis, which will make it a palatable alternative feed supplement for ruminants such as Dorper sheep. Overall, this review paper aimed to examine the available literature on the use of Cannabis as an alternative high-protein feed supplement for Dorper sheep in South Africa.
Collapse
Affiliation(s)
- Tumisho Ntsoane
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| | - Ndivho Nemukondeni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| |
Collapse
|
3
|
Wang Y, Liu Y, Xia M, Cao S. A Mendelian Randomization Study about Causal Associations between Tofu Consumption and Stroke as well as Related Subtypes. J Integr Neurosci 2024; 23:198. [PMID: 39613466 DOI: 10.31083/j.jin2311198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVE Consuming soy in the diet is beneficial for health, and tofu possess the richest source of dietary soy. However, the specific association with stroke and related subtypes remains controversial. In this study, the genetic causal relationship among tofu and stroke as well as the subtypes was investigated by utilizing the data in a number of genome-wide association study (GWAS) based on population. METHODS The tofu intake GWAS analysis is derived from the Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MRC-IEU) Consortium. The two-sample Mendelian randomization (MR) study was carried out, utilizing multiple analysis methods to analyze the associations with stroke and related subtypes. The sensitivity, heterogeneity, and potential pleiotropy could be investigated by multiple analysis method. RESULTS We found that tofu intake had no causal relationship with stroke. However, in stroke subtype, there is a causal relationship among tofu intake with the risk of intracerebral hemorrhage (ICH) (odds ratio, OR = 1.24 × 10-5, 95% CI: 1.54 × 10-8-9.95 × 10-3, p = 9.300 × 10-4), while tofu intake does not affect the risk of ischemic stroke (OR = 1.07 × 10-1, 95% CI: 3.84 × 10-4-2.97 × 101, p = 4.362 × 10-1) and subarachnoid hemorrhage (SAH) (OR = 3.33 × 10-3, 95% CI: 1.79 × 10-6-6.18, p = 1.373 × 10-1). Both the Mendelian randomization PRESSO (MR-PRESSO) global test and Cochran's Q test did not detect any sensitivity and heterogeneity. CONCLUSIONS While tofu consumption is associated with a higher risk of ICH, it does not show a significant relationship with ischemic stroke or SAH. The varying effects of tofu on different stroke subtypes underscore the need for considering potential confounding dietary and lifestyle factors in future studies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| | - Yunlong Liu
- The First Clinical College of Anhui Medical University, 230011 Hefei, Anhui, China
| | - Mingwu Xia
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| | - Shugang Cao
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| |
Collapse
|
4
|
Barik P, Kuo WW, Kuo CH, Hsieh DJY, Day CH, Daddam J, Chen MYC, Padma VV, Shibu MA, Huang CY. Rewiring of IGF1 secretion and enhanced IGF1R signaling induced by co-chaperone carboxyl-terminus of Hsp70 interacting protein in adipose-derived stem cells provide augmented cardioprotection in aging-hypertensive rats. Aging (Albany NY) 2023; 15:14019-14038. [PMID: 38085649 PMCID: PMC10756089 DOI: 10.18632/aging.205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Gao S, Zhao J, Liu X, Liu L, Chen R. Metabolomics reveals serum metabolic signatures in H-type hypertension based on mass spectrometry multi-platform. Eur J Clin Invest 2023; 53:e14063. [PMID: 37458276 DOI: 10.1111/eci.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND H-type hypertension (HHT) is a disease combined with hyperhomocysteinaemia and hypertension (HT). This study aims to find specific metabolic changes and reveal the pathophysiological mechanism of HHT, which provide the theoretical basis for the early prevention and treatment of HHT. METHODS Serum samples from three groups including 53 HHT patients, 36 HT patients and 46 healthy controls (HC) were collected. The targeted and untargeted metabolomics analyses were performed to determine the metabolic changes. Based on multivariate statistical analysis, the serum potential metabolites were screened and different metabolic pathways were explored. RESULTS Our results demonstrated that there were 28 important potential metabolites for distinguishing HT from HHT patients. Metabolic pathway analysis showed that the different metabolic pathways between HHT and HC group were arginine biosynthesis, arginine and proline metabolism, and tyrosine metabolism. The changed metabolic pathway of HT and HC group included linoleic acid metabolism. The specific metabolic pathways of HT-HHT comparison group had phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; glycine, serine and threonine metabolism. CONCLUSIONS Metabolomics analysis by mass spectrometry multi-platform revealed the differences of metabolic profiles between HHT and HT subjects. This work laid the groundwork for understanding the aetiology of HHT, and these findings may provide the useful information for explaining the HHT metabolic alterations and try to prevent HHT.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
6
|
Sleep Disorder and Cocaine Abuse Impact Purine and Pyrimidine Nucleotide Metabolic Signatures. Metabolites 2022; 12:metabo12090869. [PMID: 36144274 PMCID: PMC9502494 DOI: 10.3390/metabo12090869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Disturbances in the circadian rhythm alter the normal sleep-wake cycle, which increases vulnerability to drug abuse. Drug abuse can disrupt several homeostatic processes regulated by the circadian rhythm and influence addiction paradigms, including cravings for cocaine. The relationship between circadian rhythm and cocaine abuse is complex and bidirectional, and disruption impacts both brain function and metabolic profiles. Therefore, elucidating the impact of circadian rhythm changes and cocaine abuse on the human metabolome may provide new insights into identifying potential biomarkers. We examine the effect of cocaine administration with and without circadian rhythm sleep disruption (CRSD) on metabolite levels and compare these to healthy controls in an in vivo study. A metabolomics analysis is performed on the control, CRSD, cocaine, and CRSD with cocaine groups. Plasma metabolite concentrations are analyzed using a liquid chromatography electrochemical array platform. We identify 242 known metabolites compared to the control; 26 in the CRSD with cocaine group, 4 in the CRSD group, and 22 in the cocaine group are significantly differentially expressed. Intriguingly, in the CRSD with cocaine treatment group, the expression levels of uridine monophosphate (p < 0.008), adenosine 5′-diphosphate (p < 0.044), and inosine (p < 0.019) are significantly altered compared with those in the cocaine group. In summary, alterations in purine and pyrimidine metabolism provide clues regarding changes in the energy profile and metabolic pathways associated with chronic exposure to cocaine and CRSD.
Collapse
|
7
|
Artati A, Prehn C, Lutter D, Dyar KA. Untargeted and Targeted Circadian Metabolomics Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Flow Injection-Electrospray Ionization-Tandem Mass Spectrometry (FIA-ESI-MS/MS). Methods Mol Biol 2022; 2482:311-327. [PMID: 35610436 DOI: 10.1007/978-1-0716-2249-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A diverse array of 24-h oscillating hormones and metabolites direct and reflect circadian clock function. Circadian metabolomics uses advanced high-throughput analytical chemistry techniques to comprehensively profile these small molecules (<1.5 kDa) across 24 h in cells, media, body fluids, breath, tissues, and subcellular compartments. The goals of circadian metabolomics experiments are often multifaceted. These include identifying and tracking rhythmic metabolic inputs and outputs of central and peripheral circadian clocks, quantifying endogenous free-running period, monitoring relative phase alignment between clocks, and mapping pathophysiological consequences of clock disruption or misalignment. Depending on the particular experimental question, samples are collected under free-running or entrained conditions. Here we describe both untargeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) and flow injection-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) based assays we have used for circadian metabolomics studies. We discuss tissue homogenization, chemical derivatization, measurement, and tips for data processing, normalization, scaling, how to handle outliers, and imputation of missing values.
Collapse
Affiliation(s)
- Anna Artati
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kenneth Allen Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
8
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
9
|
Wang A, Chen X, Wu S, Jia W, Jiao J, Zhang Y. Unraveling the Serum Metabolomic Profile of Acrylamide-Induced Cardiovascular Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12012-12020. [PMID: 34586797 DOI: 10.1021/acs.jafc.1c04367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide has been reported as an important dietary risk factor from carbohydrate-rich processing food. However, systemic biological effects on the serum metabolomics induced by acrylamide have poorly been understood. In the present study, we evaluated the metabolic profiles in a rat serum after exposure to acrylamide using ultrahigh-performance liquid chromatography combined with quadrupole-orbitrap high-resolution mass spectrometry. The serum biochemical parameters of the treated and control groups were also determined using an automatic biochemical analyzer. Compared with the control group, 10 metabolites were significantly upregulated, including citric acid, d-(-)-fructose, gluconic acid, l-ascorbic acid 2-sulfate, 2-hydroxycinnamic acid, valine, l-phenylalanine, prolylleucine, succinic acid, and cholic acid, while 5 metabolites were significantly downregulated, including 3-hydroxybutyric acid, 4-oxoproline, 2,6-xylidine, 4-phenyl-3-buten-2-one, and N-ethyl-N-methylcathinone in the serum of 4-week-old rats exposed to acrylamide in the high-dose group (all P < 0.05). Importantly, acrylamide exposure affected metabolites mainly involved in the citrate cycle, valine, leucine, and isoleucine biosyntheses, phenylalanine, tyrosine and tryptophan biosyntheses, and pyruvate metabolism. These results suggested that exposure to acrylamide in rats exhibited marked systemic metabolic changes and affected the cardiovascular system. This study will provide a theoretical basis for exploring the toxic mechanism and will contribute to the diagnosis and prevention of acrylamide-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shanyun Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Identification of Potential Metabolic Markers of Hypertension in Chinese Children. Int J Hypertens 2021; 2021:6691734. [PMID: 34484817 PMCID: PMC8410451 DOI: 10.1155/2021/6691734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Studies in adults have shown that several metabolites across multiple pathways are strongly associated with hypertension. However, as yet, to our knowledge, no study has investigated such association in childhood. We, therefore, compared the serum metabolite profile of children with normal and elevated blood pressure (BP) to identify potential metabolic markers and pathways that could be useful for the assessment of pediatric hypertension. Methods The study included 26 hypertensive children (age range, 6-11 years) and 26 age- and sex-matched ones with normal BP, who were recruited from the baseline survey of the Huantai Childhood Cardiovascular Health Cohort Study. Ultrahigh-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry was performed to assess the serum metabolite profile. Logistic regression analysis was used to select significant metabolites associated with hypertension after adjustment for body mass index, waist circumference, and lipid profile. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were utilized to search for the potential pathways of metabolites. Results A total of 45 and 34 metabolites were preliminarily screened in positive and negative modes, respectively (variable importance in the projection (VIP) > 1.0 and P < 0.05). After adjustment for the false discovery rate, 7 and 1 differential metabolites in the positive and negative modes, respectively, remained significant (VIP > 1.0 and q < 0.05). These metabolites were mainly involved in amino acid metabolism and glycerophospholipid metabolism. Among these, two significant metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate displayed an area under the curve value of 0.820 (95% confidence interval, 0.688-0.951), with a sensitivity of 0.846 and a specificity of 0.769. Conclusion The untargeted metabolomics approach effectively identified the differential serum metabolite profile in children with and without hypertension. Notably, two metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate exhibited a good discriminative ability to identify children with hypertension, providing new insights into potential mechanisms of pediatric hypertension.
Collapse
|
11
|
Sato T, Greco CM. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic Biol Med 2021; 170:50-58. [PMID: 33450380 DOI: 10.1016/j.freeradbiomed.2021.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play a central role in physiological and metabolic processes. This is mostly achieved through rhythmic regulation of myriad genes via dynamic epigenome changes. Accumulating evidence indicates that oxidative stress and redox balance are under circadian control and feedback on the clock system. Circadian perturbations induce oxidative stress accumulation and disturb redox balance. Along with these changes, epigenomic landscape changes are a remarkable hallmark of clock disruption. This review aims to summarize evidence supporting the link between the circadian clock and redox metabolism, focusing on possible connections through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Plasma methionine metabolic profile is associated with longevity in mammals. Commun Biol 2021; 4:725. [PMID: 34117367 PMCID: PMC8196171 DOI: 10.1038/s42003-021-02254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species. Mota-Martorell and colleagues use a comparative metabolomics approach to examine plasma metabolite levels associated with methionine metabolism in 11 mammalian species. They identify species specific plasma profiles indicative of a link between lifetime longevity and methionine metabolism.
Collapse
|
13
|
dos Santos Fechine CPN, Monteiro MGCA, Tavares JF, Souto AL, Luna RCP, da Silva CSO, da Silva JA, dos Santos SG, de Carvalho Costa MJ, Persuhn DC. Choline Metabolites, Hydroxybutyrate and HDL after Dietary Fiber Supplementation in Overweight/Obese Hypertensive Women: A Metabolomic Study. Nutrients 2021; 13:nu13051437. [PMID: 33923171 PMCID: PMC8146352 DOI: 10.3390/nu13051437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolomics has been increasingly used to evaluate metabolic changes associated with morbidities. The objective of this study is to assess the metabolic profile before and after intervention with mixed dietary fiber in overweight and obese hypertensive women. This is an intervention study, and the sample consists of 14 women aged 28 to 58 years. An intervention with 12 g of mixed soluble and insoluble fiber is performed for a period of eight weeks. Serum metabolites are identified using a Bruker 1H NMR spectrometer at 400 MHz. Multivariate data analysis, including principal component analysis (PCA), is used to differentiate the two groups. After supplementation with dietary fiber, there is a significant increase in the peak intensity values of the metabolites HDL-C (0.0010*), choline (0.0012*) and hydroxybutyrate (0.0010*) as well as a decrease in systolic (0.0013*) and diastolic (0.0026*) blood pressure. The analysis of the metabolomic profile allows the identification of metabolites that have been associated in the literature with hypertension and excess weight (choline, hydroxybutyrate and amino acids) and with fiber intake (choline, hydroxybutyrate and amino acids) in addition to an increase in HDL-C. The increase in the detection of the described metabolites possibly occurs due to the presence of pathologies and the use of fiber in the intervention, which also contributes to elevated HDL-c and reduced blood pressure.
Collapse
Affiliation(s)
- Carla Patricia Novaes dos Santos Fechine
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
- Correspondence: ; Tel.: +55-(83)-999841715
| | - Mussara Gomes Cavalcanti Alves Monteiro
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, Brazil; (J.F.T.); (A.L.S.); (S.G.d.S.)
| | - Augusto Lopes Souto
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, Brazil; (J.F.T.); (A.L.S.); (S.G.d.S.)
| | - Rafaella Cristhine Pordeus Luna
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| | - Cássia Surama Oliveira da Silva
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| | - Jairo Alves da Silva
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| | - Sócrates Golzio dos Santos
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, Brazil; (J.F.T.); (A.L.S.); (S.G.d.S.)
| | - Maria José de Carvalho Costa
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| | - Darlene Camati Persuhn
- Postgraduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.G.C.A.M.); (R.C.P.L.); (C.S.O.d.S.); (J.A.d.S.); (M.J.d.C.C.); (D.C.P.)
| |
Collapse
|
14
|
Abstract
Hypertension is a leading risk factor for disease burden worldwide. The kidneys, which have a high specific metabolic rate, play an essential role in the long-term regulation of arterial blood pressure. In this review, we discuss the emerging role of renal metabolism in the development of hypertension. Renal energy and substrate metabolism is characterized by several important and, in some cases, unique features. Recent advances suggest that alterations of renal metabolism may result from genetic abnormalities or serve initially as a physiological response to environmental stressors to support tubular transport, which may ultimately affect regulatory pathways and lead to unfavorable cellular and pathophysiological consequences that contribute to the development of hypertension.
Collapse
Affiliation(s)
- Zhongmin Tian
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Mingyu Liang
- grid.30760.320000 0001 2111 8460Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
15
|
Hou Q, Zhang S, Li Y, Wang H, Zhang D, Qi D, Li Y, Jiang H. New insights on association between circadian rhythm and lipid metabolism in spontaneously hypertensive rats. Life Sci 2021; 271:119145. [PMID: 33548288 DOI: 10.1016/j.lfs.2021.119145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
AIMS The aim of this study is to provide new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in spontaneously hypertensive rats. MATERIALS AND METHODS An untargeted lipidomics using ultrahigh performance liquid chromatography-mass spectrometry metabolomics was used to identify the differentially expressed lipid metabolites over 24 h in Spontaneously hypertensive rats (SHR) with reference to Wistar-Kyoto rats (WKY). The expression of circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2) and lipid metabolism related genes (Rev-erbα, Pparα and Sirt1) was analysed RT-qPCR. KEY FINDINGS Ten lipid metabolites with significant differences in their levels in SHR compared to WKY were identified. The levels of MG (25:0), PA (36:3) and PE (38:2) were lower and the levels of LysoPCs (20:0 and 20:3) and TGs (54:5, 59:12, 28:0, 60:10 and 60:13) were found to be higher in SHR. SHR showed obvious disorders in the expression of circadian genes and lipid metabolism associated genes. A strong association between the levels of lipid metabolites and circadian genes and lipid metabolism associated genes was found. SIGNIFICANCE Rhythm genes may further affect the 24-hour lipid metabolism level of spontaneously hypertensive rats by mediating lipid metabolism associated genes. This research provides new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in SHR.
Collapse
Affiliation(s)
- Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shiming Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Huanjun Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
16
|
Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Luque-Córdoba D, Priego-Capote F, Pérez-Brocal V, Moya A, Burokas A, Maldonado R, Fernández-Real JM. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. MICROBIOME 2020; 8:136. [PMID: 32951609 PMCID: PMC7504665 DOI: 10.1186/s40168-020-00913-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gonadal steroid hormones have been suggested as the underlying mechanism responsible for the sexual dimorphism observed in metabolic diseases. Animal studies have also evidenced a causal role of the gut microbiome and metabolic health. However, the role of sexual dimorphism in the gut microbiota and the potential role of the microbiome in influencing sex steroid hormones and shaping sexually dimorphic susceptibility to disease have been largely overlooked. Although there is some evidence of sex-specific differences in the gut microbiota diversity, composition, and functionality, the results are inconsistent. Importantly, most of these studies have not taken into account the gonadal steroid status. Therefore, we investigated the gut microbiome composition and functionality in relation to sex, menopausal status, and circulating sex steroids. RESULTS No significant differences were found in alpha diversity indices among pre- and post-menopausal women and men, but beta diversity differed among groups. The gut microbiota from post-menopausal women was more similar to men than to pre-menopausal women. Metagenome functional analyses revealed no significant differences between post-menopausal women and men. Gonadal steroids were specifically associated with these differences. Hence, the gut microbiota of pre-menopausal women was more enriched in genes from the steroid biosynthesis and degradation pathways, with the former having the strongest fold change among all associated pathways. Microbial steroid pathways also had significant associations with the plasma levels of testosterone and progesterone. In addition, a specific microbiome signature was able to predict the circulating testosterone levels at baseline and after 1-year follow-up. In addition, this microbiome signature could be transmitted from humans to antibiotic-induced microbiome-depleted male mice, being able to predict donor's testosterone levels 4 weeks later, implying that the microbiota profile of the recipient mouse was influenced by the donor's gender. Finally, obesity eliminated most of the differences observed among non-obese pre-menopausal women, post-menopausal women, and men in the gut microbiota composition (Bray-Curtis and weighted unifrac beta diversity), functionality, and the gonadal steroid status. CONCLUSIONS The present findings evidence clear differences in the gut microbial composition and functionality between men and women, which is eliminated by both menopausal and obesity status. We also reveal a tight link between the gut microbiota composition and the circulating levels of gonadal steroids, particularly testosterone. Video Abstract.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Departament de Ciències Mèdiques, Hospital of Girona "Dr JosepTrueta", Girona Biomedical Research Institute (IdibGi), University of Girona, Carretera de França s/n, 17007, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Endocrinology, Diabetes and Nutrition, Departament de Ciències Mèdiques, Hospital of Girona "Dr JosepTrueta", Girona Biomedical Research Institute (IdibGi), University of Girona, Carretera de França s/n, 17007, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Luque-Córdoba
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- CIBERfes Frailty and Healthy Aging, Instituto de Salud Carlos III, Madrid, Spain
| | - Feliciano Priego-Capote
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- CIBERfes Frailty and Healthy Aging, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Present address: Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Departament de Ciències Mèdiques, Hospital of Girona "Dr JosepTrueta", Girona Biomedical Research Institute (IdibGi), University of Girona, Carretera de França s/n, 17007, Girona, Spain.
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Shah RD, Tang ZZ, Chen G, Huang S, Ferguson JF. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr Metab Cardiovasc Dis 2020; 30:1500-1511. [PMID: 32620337 PMCID: PMC7483644 DOI: 10.1016/j.numecd.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Consumption of soy foods has been associated with protection against cardiometabolic disease, but the mechanisms are incompletely understood. We hypothesized that habitual soy food consumption associates with gut microbiome composition, metabolite production, and the interaction between diet, microbiota and metabolites. METHODS AND RESULTS We analyzed dietary soy intake, plasma and stool metabolites, and gut microbiome data from two independent cross-sectional samples of healthy US individuals (N = 75 lean or overweight, and N = 29 obese). Habitual soy intake associated with several circulating metabolites. There was a significant interaction between soy intake and gut microbiome composition, as defined by gut enterotype, on metabolites in plasma and stool. Soy consumption associated with reduced systolic blood pressure, but only in a subset of individuals defined by their gut microbiome enterotype, suggesting that responsiveness to soy may be dependent on microbiome composition. Soy intake was associated with differences in specific microbial taxa, including two taxa mapping to genus Dialister and Prevotella which appeared to be suppressed by high soy intake We identified context-dependent effects of these taxa, where presence of Prevotella was associated with higher blood pressure and a worse cardiometabolic profile, but only in the absence of Dialister. CONCLUSIONS The gut microbiome is an important intermediate in the interplay between dietary soy intake and systemic metabolism. Consumption of soy foods may shape the microbiome by suppressing specific taxa, and may protect against hypertension only in individuals with soy-responsive microbiota. CLINICAL TRIALS REGISTRY NCT02010359 at clinicaltrials.gov.
Collapse
Affiliation(s)
- Rachana D Shah
- Division of Pediatric Endocrinology, Children's Hospital of Philadelphia, PA, USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jane F Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|