1
|
de Groot N, van der Wiel M, Le NG, de Groot NG, Bruijnesteijn J, Bontrop RE. Unraveling the architecture of major histocompatibility complex class II haplotypes in rhesus macaques. Genome Res 2024; 34:1811-1824. [PMID: 39443153 DOI: 10.1101/gr.278968.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 10/25/2024]
Abstract
The regions in the genome that encode components of the immune system are often featured by polymorphism, copy number variation, and segmental duplications. There is a need to thoroughly characterize these complex regions to gain insight into the impact of genomic diversity on health and disease. Here we resolve the organization of complete major histocompatibility complex (MHC) class II regions in rhesus macaques by using a long-read sequencing strategy (Oxford Nanopore Technologies) in concert with adaptive sampling. In particular, the expansion and contraction of the primate DRB-region appear to be a dynamic process that involves the rearrangement of different cassettes of paralogous genes. These chromosomal recombination events are propagated by a conserved pseudogene, DRB6, which features the integration of two retroviral elements. In contrast, the DRA locus appears to be protected from rearrangements, which may be owing to the presence of an adjacently located truncated gene segment, DRB9 With our sequencing strategy, the annotation, evolutionary conservation, and potential function of pseudogenes can be reassessed, an aspect that was neglected by most genome studies in primates. Furthermore, our approach facilitates the characterization and refinement of an animal model essential to study human biology and disease.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Marit van der Wiel
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Ngoc Giang Le
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands;
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
- Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
3
|
Lee AR, Woo JS, Lee SY, Lee YS, Jung J, Lee CR, Park SH, Cho ML. SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal 2023; 21:44. [PMID: 36864432 PMCID: PMC9978284 DOI: 10.1186/s12964-023-01044-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) induces inflammation, autoantibody production, and thrombosis, which are common symptoms of autoimmune diseases, including rheumatoid arthritis (RA). However, the effect of COVID-19 on autoimmune disease is not yet fully understood. METHODS This study was performed to investigate the effects of COVID-19 on the development and progression of RA using a collagen-induced arthritis (CIA) animal model. Human fibroblast-like synoviocytes (FLS) were transduced with lentivirus carrying the SARS-CoV-2 spike protein gene in vitro, and the levels of inflammatory cytokine and chemokine expression were measured. For in vivo experiments, CIA mice were injected with the gene encoding SARS-CoV-2 spike protein, and disease severity, levels of autoantibodies, thrombotic factors, and inflammatory cytokine and chemokine expression were assessed. In the in vitro experiments, the levels of inflammatory cytokine and chemokine expression were significantly increased by overexpression of SARS-CoV-2 spike protein in human FLS. RESULTS The incidence and severity of RA in CIA mice were slightly increased by SARS-CoV-2 spike protein in vivo. In addition, the levels of autoantibodies and thrombotic factors, such as anti-CXC chemokine ligand 4 (CXCL4, also called PF4) antibodies and anti-phospholipid antibodies were significantly increased by SARS-CoV-2 spike protein. Furthermore, tissue destruction and inflammatory cytokine level in joint tissue were markedly increased in CIA mice by SARS-CoV-2 spike protein. CONCLUSIONS The results of the present study suggested that COVID-19 accelerates the development and progression of RA by increasing inflammation, autoantibody production, and thrombosis. Video Abstract.
Collapse
Affiliation(s)
- A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yeon Su Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jooyeon Jung
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Chae Rim Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
5
|
Zhao T, Xie Z, Xi Y, Liu L, Li Z, Qin D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front Immunol 2022; 13:887460. [PMID: 35693791 PMCID: PMC9174425 DOI: 10.3389/fimmu.2022.887460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by both genetic and environmental factors. At present, rodent models are primarily used to study the pathogenesis and treatment of RA. However, the genetic divergences between rodents and humans determine differences in the development of RA, which makes it necessary to explore the establishment of new models. Compared to rodents, non-human primates (NHPs) are much more closely related to humans in terms of the immune system, metabolic conditions, and genetic make-up. NHPs model provides a powerful tool to study the development of RA and potential complications, as well as preclinical studies in drug development. This review provides a brief overview of the RA animal models, emphasizes the replication methods, pros and cons, as well as evaluates the validity of the rodent and NHPs models.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Liu
- Ge Jiu People’s Hospital, Yunnan Honghe Prefecture Central Hospital, Gejiu, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|