1
|
Yang R, Yang M, Wu Z, Liu B, Zheng M, Lu L, Wu S. Tespa1 deficiency reduces the antitumour immune response by decreasing CD8 +T cell activity in a mouse Lewis lung cancer model. Int Immunopharmacol 2023; 124:110865. [PMID: 37660596 DOI: 10.1016/j.intimp.2023.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is a key molecule in T-cell development and has been linked to immune diseases. However, its role in antitumour CD8+T cell immunity remains unclear. Here, we demonstrated that Tespa1 plays an important role in antitumour CD8+T cell immunity. First, compared with wild-type (WT) mice, Lewis lung cancer cells grew faster in Tespa1 knockout (Tespa1-/-) mice, with reduced apoptosis, and decreased CD8+T cells in peripheral blood and tumor tissues. Second, the proportion of CD8+T and Th1 cells in the splenocytes of Tespa1-/- mice was lower than that in WT mice. Third, Tespa1-/- CD8+ tumor-infiltrating lymphocytes (TILs) showed weakened proliferation, invasion, cytotoxicity, and protein expression of IL-2 signalling pathway components compared to WT CD8+TILs. Furthermore, PD-1 expression in CD8+TILs was higher in Tespa1-/- than in WT mice. Lastly, CD8+TILs in WT mice improved the antitumour ability of Tespa1-/- mice. In conclusion, these findings suggest that Tespa1 plays a critical role in the tumor immune system by regulating CD8+T cells.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China; Department of Pharmacology, Lishui University School of Medicine, Lishui 323000, China
| | - Mingyue Yang
- The First Clinical Department, China Medical University, Shenyang 110122, China
| | - Zehua Wu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315000, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui 323000, China.
| |
Collapse
|
2
|
Lu Y, Yang L, Shen M, Zhang Z, Wang S, Chen F, Chen N, Xu Y, Zeng H, Chen M, Chen S, Wang F, Hu M, Wang J. Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation. Leukemia 2023; 37:1039-1047. [PMID: 36997676 PMCID: PMC10169665 DOI: 10.1038/s41375-023-01880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have robust self-renewal potential, which is responsible for sustaining normal and malignant hematopoiesis, respectively. Although considerable efforts have been made to explore the regulation of HSC and LSC maintenance, the underlying molecular mechanism remains obscure. Here, we observe that the expression of thymocyte-expressed, positive selection-associated 1 (Tespa1) is markedly increased in HSCs after stresses exposure. Of note, deletion of Tespa1 results in short-term expansion but long-term exhaustion of HSCs in mice under stress conditions due to impaired quiescence. Mechanistically, Tespa1 can interact with CSN subunit 6 (CSN6), a subunit of COP9 signalosome, to prevent ubiquitination-mediated degradation of c-Myc protein in HSCs. As a consequence, forcing c-Myc expression improves the functional defect of Tespa1-null HSCs. On the other hand, Tespa1 is identified to be highly enriched in human acute myeloid leukemia (AML) cells and is essential for AML cell growth. Furthermore, using MLL-AF9-induced AML model, we find that Tespa1 deficiency suppresses leukemogenesis and LSC maintenance. In summary, our findings reveal the important role of Tespa1 in promoting HSC and LSC maintenance and therefore provide new insights on the feasibility of hematopoietic regeneration and AML treatment.
Collapse
Affiliation(s)
- Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Zhang Q, Zhu W, Zou Z, Yu W, Gao P, Wang Y, Chen J. A Preliminary Study in Immune Response of BALB/c and C57BL/6 Mice with a Locally Allergic Rhinitis Model. Am J Rhinol Allergy 2023:19458924231157619. [PMID: 36797980 DOI: 10.1177/19458924231157619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND BALB/c and C57BL/6 mouse strains are commonly used in allergy research. The current study investigated the immunological differences between these two mouse strains with a locally allergic rhinitis model. METHODS Eighteen BALB/c and eighteen C57BL/6 mice received different doses of ovalbumin (OVA) intranasally for eight weeks (each mouse strain has three subgroups, 25 mg/mL group, 0.25 mg/mL group, and the PBS group). The allergic symptoms, OVA-specific serum antibody (IgE, IgG1, IgG2a), cytokines (IL-4, IFN-γ, IL-10) in the splenic culture supernatant, infiltrating eosinophils and goblet cells in local nasal mucosa were measured. RNA-seq technology was applied to detect differential gene expression in the local nasal mucosa. RESULTS With the same dose of OVA stimulation, the exacerbation of allergic symptoms was more pronounced in C57BL/6 than in BALB/c. BALB/c serum IgE, IgG1, and IgG2a gradually increased, and C57BL/6 produced fewer serum antibodies IgE and IgG1, while IgG2a never increased. BALB/c spleen cell culture supernatant IL-4 and IL-10 increased with increasing dose, and IFN-γ increased significantly in the intermediate dose group, while IL-4, IL-10, and IFN-γ did not increase in C57BL/6. The infiltration of eosinophils and goblet cells in both mice was proportional to the dose, while C57BL/6 was elevated more than BALB/c. RNA-seq suggested that the innate immune response, immune system process function, Jun kinase (JNK) pathway, and MAPKK pathway were upregulated in C57BL/6 compared to BALB/c. The core genes responsible for the differential immune response in both mice with allergic rhinitis were Kng2, Kng1, Gnb3, Lpar3, Lpar1, Pik3r1, Pf4, Apob, Rps9, and Fbxo2. CONCLUSION There are significant differences in the immunologic responses between BALB/c mice and C57BL/6 mice. BALB/c mice developed mild local allergic inflammatory reactions and strong systemic immune responses. In contrast, C57BL/6 mice had stronger local allergic inflammatory responses and relatively mild systemic immune responses. Different mice strains can be selected according to the research purpose.
Collapse
Affiliation(s)
- Qidi Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Wanting Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Pei Gao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Jung J, McCartney DL, Wagner J, Rosoff DB, Schwandt M, Sun H, Wiers CE, de Carvalho LM, Volkow ND, Walker RM, Campbell A, Porteous DJ, McIntosh AM, Marioni RE, Horvath S, Evans KL, Lohoff FW. Alcohol use disorder is associated with DNA methylation-based shortening of telomere length and regulated by TESPA1: implications for aging. Mol Psychiatry 2022; 27:3875-3884. [PMID: 35705636 PMCID: PMC9708583 DOI: 10.1038/s41380-022-01624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.
Collapse
Affiliation(s)
- Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luana Martins de Carvalho
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|