1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
You Z, Wu F, Zheng Y, Yang H, Ye J, Cai H, Luo C, Liu Y, Ke Y, Xu X. miR-139-5p activates ferroptosis by inhibiting the expression of HMG-CoA reductase to inhibit the progression of glioma. Cell Death Discov 2025; 11:245. [PMID: 40399275 PMCID: PMC12095534 DOI: 10.1038/s41420-025-02532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Glioma is the most aggressive and common tumour in the central nervous system. It has been reported that miR-139-5p plays an important role in regulating tumour progression. However, whether miR-139-5p affects the progression of glioma and the specific mechanism remains to be explored. Through experiments involving down-regulation or overexpression of miR-139-5p and treatment with simvastatin (SIM), qRT-PCR and Western Blot were used to detect the expression levels of related genes. Transmission electron microscopy (TEM) and corresponding kits were used to detect the changes in ferroptosis and cholesterol content in glioma cells. RNA-seq analysis was used to explore the specific mechanism by which miR-139-5p regulates ferroptosis. Our results demonstrate that miR-139-5p expression is significantly reduced in glioma cells compared to normal glial cells and is associated with poor prognosis. Overexpression of miR-139-5p promotes ferroptosis and inhibits tumour cell proliferation by downregulating HMG-CoA reductase (HMGCR) expression, consequently hindering glioma progression. Additionally, we found a synergistic effect between miR-139-5p overexpression and SIM treatment in promoting ferroptosis in gliomas. These findings suggest that miR-139-5p could serve as a potential therapeutic target for glioma treatment, particularly in combination with SIM. This study demonstrated that miR-139-5p promoted ferroptosis in glioma cells by down-regulating HMGCR expression and cholesterol synthesis. Moreover, miR-139-5p and SIM had a synergistic effect in promoting ferroptosis to prevent glioma progression.
Collapse
Affiliation(s)
- Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Fei Wu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yaofeng Zheng
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Hongling Yang
- Department of Ultrasound Diagnosis, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianbo Ye
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Hongyi Cai
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chuangcai Luo
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
3
|
Liu Q, Xiong W. LINC00534 promotes breast cancer progression by targeting the miR-139-5p/HMGB2 axis. Discov Oncol 2025; 16:655. [PMID: 40314851 PMCID: PMC12048369 DOI: 10.1007/s12672-025-02483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignancy among women, it is crucial to identify sensitive biomarkers for prognosis and treatment of breast cancer patients. Emerging research has demonstrated the involvement of long noncoding RNAs (lncRNAs) in the advancement of breast cancer. LINC00534 has recently emerged as a potential regulator in multiple malignancies, yet its clinical significance and molecular mechanisms in breast cancer remain poorly characterized. OBJECTIVE The purpose of this study was to explore the function of LINC00534 and miR-139-5p in breast cancer progression, as well as the mechanisms that underpin its actions. METHODS Tumor and normal tissues were collected from 80 breast cancer patients. qRT-PCR was performed to detect LINC00534 expression in tissues. Kaplan-Meier analysis was used to assess survival differences between groups and the correlation between LINC00534 expression and clinical outcomes. CCK-8 assay was used to evaluate cell proliferation to assess LINC00534's effect on tumor growth. To evaluate the impact of LINC00534 on tumor metastasis, transwell assay was used to detect the migration and invasion abilities of cells. Moreover, dual-luciferase assay was used to verify the relationship within the LINC00534/miR-139-5p/HMGB2 axis. RESULT LINC00534 was significantly upregulated in breast cancer tumor tissues and cell lines (p < 0.001). Higher LINC00534 expression correlated with poorer prognosis in breast cancer patients, including shorter survival and higher recurrence risk (Log-rank p = 0.014). Furthermore, LINC00534 promoted breast cancer cell proliferation, migration, and invasion (all p < 0.001) via its interaction with the miR-139-5p/HMGB2 axis. CONCLUSION LINC00534 may serve as a prognostic marker and the LINC00534/miR-139-5p/HMGB2 axis could be a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qiaomei Liu
- Pain Rehabilitation Department, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Department of Thyroid and Breast Surgery, Hubei Provincial Hospital of TCM, Hubei Shizhen Laboratory, No. 4 Garden Hill, Rouge Road, Wuchang District, Wuhan, 430061, China.
| |
Collapse
|
4
|
Mondal J, Huse JT. Neurotransmitter power plays: the synaptic communication nexus shaping brain cancer. Acta Neuropathol Commun 2025; 13:85. [PMID: 40307951 PMCID: PMC12042361 DOI: 10.1186/s40478-025-02009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Gliomas and brain metastases are notorious for their dismal prognosis and low survival rates, a challenge exacerbated by our incomplete grasp of the complex dynamics that govern brain cancers. Recently, a groundbreaking paradigm shift has emerged, highlighting the crucial role of synaptic communication between neurons and brain tumor cells in reshaping neuronal signaling to favor tumor growth. This review delves into the pivotal interplay of synaptic mechanisms, focusing on excitatory glutamatergic and inhibitory GABAergic pathways. Glutamatergic synapses utilize glutamate to propagate excitatory signals, while GABAergic synapses employ gamma-aminobutyric acid (GABA) to inhibit neuronal firing. Glutamatergic signaling can be broadly classified into ionotropic (NMDAR, AMPAR and kainite receptors) and metabotropic subtypes. The harmonious orchestration of these synaptic types is essential for normal brain function, and their dysregulation is implicated in neurodegenerative disorders such as Alzheimer's disease and epilepsy. Emerging evidence reveals that glioma and brain metastatic cells exploit these synaptic pathways and neurotransmitters to enhance their proliferation and survival. In this review, we will first explore the intricate mechanisms underlying glutamatergic and GABAergic signaling. Next, we will summarize recent advancements in understanding how brain cancer cells hijack these pathways to their advantage. Finally, we will propose novel therapeutic strategies aimed at disrupting the aberrant neuron-tumor synaptic communication, offering potential treatment strategies for combating these otherwise incurable brain cancers.
Collapse
Affiliation(s)
- Jayanta Mondal
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Li D, Zheng P, Huang S. SLC12A9 is an immunological and prognostic biomarker for glioma. Gene 2025; 937:149136. [PMID: 39622394 DOI: 10.1016/j.gene.2024.149136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Glioma is one of the most common malignant brain tumors. It has a high rate of progression and a poor prognosis, and effective biomarkers still need to be identified. The solute carrier family 12 (SLC12) family has been reported to be involved in various physiological and pathological processes, but their functional roles in glioma remain unclear. METHODS Using public datasets, we studied the mutation and expression level of SLC12 family genes in glioma and identified the significantly differentially expressed member solute carrier family 12 member 9 (SLC12A9). We further predicted the prognostic role of SLC12A9 in glioma by using the Kaplan-Meier method and Cox regression analysis. Then, we performed biological functional enrichment analysis. We focused on the relationships between SLC12A9 expression and immune infiltration in glioma. Meanwhile, we conducted in vitro experiments to evaluate the effect of SLC12A9 expression on glioma cells. RESULTS Among the members of the SLC12 family, SLC12A9 had the highest mutation rate in glioma, with gene amplification as the major mutation type, and its expression was significantly upregulated in glioma. Higher SLC12A9 expression was significantly associated with older age, higher grade, wild-type isocitrate dehydrogenase (IDH), and a worse prognosis. The functional enrichment analysis indicated that SLC12A9 is mainly related to ion channel annotation. Gene set enrichment analysis (GSEA) revealed that SLC12A9 was mainly related to the DNA replication pathway. Furthermore, we found that SLC12A9 correlated with tumor-infiltrating immune cells and immune checkpoints. Thus, SLC12A9 may be involved in regulating the immune response of glioma. Finally, our in vitro experiments revealed that silencing SLC12A9 dramatically inhibited glioma cell growth and migration. CONCLUSIONS We showed that SLC12A9 may be a new predictive biomarker for glioma diagnosis, prognosis, and immunotherapy response, offering helpful guidelines to advance glioma treatment.
Collapse
Affiliation(s)
- Danting Li
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Peilin Zheng
- Department of General Practice, People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| | - Shoujun Huang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Patra S, Dey J, Kar S, Chakraborty A. Delivery of Chlorambucil to the Brain Using Surface Modified Solid Lipid Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3403-3413. [PMID: 38700026 DOI: 10.1021/acsabm.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Kar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| |
Collapse
|
7
|
Yi H, Liu L, Zhang J, Guo K, Cao Y, Sun P, Wang H. GALNT2 targeted by miR-139-5p promotes proliferation of clear cell renal cell carcinoma via inhibition of LATS2 activation. Discov Oncol 2024; 15:73. [PMID: 38478152 PMCID: PMC10937861 DOI: 10.1007/s12672-024-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Polypeptide N-Acetylgalactosaminyltransferase (GALNTs) are critical enzymes that initiate mucin type-O glycosylation, and are closely associated with the occurrence and development of multiple cancers. However, the significance of GALNT2 in clear cell renal cell carcinoma (ccRCC) progression remains largely undetermined. Based on public multi-omics analysis, GALNT2 was strongly elevated in ccRCC versus adjoining nontumor tissues, and it displayed a relationship with poor overall survival (OS) of ccRCC patients. In addition, GALNT2 over-expression accelerated proliferation of renal cancer cell (RCC) lines. In contrast, GALNT2 knockdown using shRNAs suppressed cell proliferation, and this was rescued by LATS2 knockdown. Similarly, GALNT2 deficiency enhanced p-LATS2/LATS2 expression. LATS2 is activated by phosphorylation (p-LATS2) and, in turn, phosphorylate the downstream substrate protein YAP. Phosphorylated YAP (p-YAP) stimulated its degradation and cytoplasmic retention, as it was unable to translocate to the nucleus. This resulted in reduced cell proliferation. Subsequently, we explored the upstream miRNAs of GALNT2. Using dual luciferase reporter assay, we revealed that miR-139-5p interacted with the 3' UTR of GALNT2. Low miR-139-5p expression was associated with worse ccRCC patient outcome. Based on our experiments, miR-139-5p overexpression inhibited RCC proliferation, and this phenotype was rescued by GALNT2 overexpression. Given these evidences, the miR-139-5p-GALNT2-LATS2 axis is critical for RCC proliferation, and it is an excellent candidate for a new therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Haisheng Yi
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Jingshun Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Li L, Zhang Y, Yang K, Liu W, Zhou Z, Xu Y. miRNA-449c-5p regulates the JAK-STAT pathway in inhibiting cell proliferation and invasion in human breast cancer cells by targeting ERBB2. Cancer Rep (Hoboken) 2024; 7:e1974. [PMID: 38351535 PMCID: PMC10864726 DOI: 10.1002/cnr2.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Breast cancer is a highly prevalent disease worldwide, and early diagnosis and treatment could reduce the mortality rate of breast cancer patients. microRNAs (miRNA) have been shown to regulate the occurrences and progression of many types of cancers. Thus, it is crucial to find novel biomarkers in breast cancer. miR-449c-5p acted as a biomarker in non-small cell lung cancer, gastric carcinoma, and so forth. ERBB2 is an ideal target for breast cancer therapy. However, the molecular mechanisms between miR-449c-5p and ERBB2 in breast cancer remain poorly understood. Our study focused on the regulatory role of miR-449c-5p in breast cancer and its targeting relationship with ERBB2. METHODS The miR-449c-5p expression in breast cancer tissue and normal tissue was searched from the online database (Starbase). The clinical prognosis of miR-449c-5p and ERBB2 was predicted by using the Kaplan-Meier analysis method. The expression of miR-449c-5p mimics and inhibitors was measured by qRT-PCR. T47D cells were transfected with miR-449c-5p mimics and miR-449c-5p inhibitors. After that, CCK-8, colony formation assays and Transwell assays were used to evaluate the cell proliferation ability, migration and invasion. Whether ERBB2 was the target gene of the miR-449c-5p was predicted by Starbase and verified by dual-luciferase activity assay. In addition, protein levels and the relationship between signalling pathways were measured and validated using western blotting analysis. RESULTS We confirmed that miR-449c-5p was highly expressed in breast cancer tissue, and its downregulation was linked with poor prognosis. Overexpression of miR-449c-5p inhibited the proliferation, migration and invasion of breast cancer cells. ERBB2 was a target of miR-449c-5p. The invasion, migration, and proliferation of breast cancer cells were inhibited by miR-449c-5p/ERBB2 through JAK-STAT. CONCLUSION This study demonstrated that miR-449c-5p inhibits breast cancer cell proliferation, migration and invasion by targeting ERBB2 via JAK/STAT, which means miR-449c-5p, is a potential biomarker for breast cancer and provides a novel insight for diagnosis.
Collapse
Affiliation(s)
- Li Li
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Yangqiurong Zhang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Wei Liu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ziting Zhou
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ying Xu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| |
Collapse
|
9
|
Liu Y, Wang Z, Tang Z, Fu Y, Wang L. mirna-383-5p Functions as an Anti-oncogene in Glioma through the Akt/mTOR Signaling Pathway by Targeting VEGFA. Curr Cancer Drug Targets 2024; 24:463-475. [PMID: 37592783 PMCID: PMC10964077 DOI: 10.2174/1568009623666230817102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Previously, we have screened 59 differentially expressed miRNAs and 419 mRNAs in the glioblastoma samples that have been compared to the peritumoral tissues using bioinformatics analyses, which included miRNA-383-5p and vascular endothelial growth factor A (VEGFA). miRNA-383-5p and VEGFA/Akt/mTOR pathway play important regulatory roles in the malignant biological behavior of glioma. METHODS Glioma cell lines, U87 and U251, were collected for in vitro experiments. miRNA-383-5p and VEGFA expression levels were detected with qRT-PCR and WB. The protein expressions of Akt, mTOR, and VEGFR in U87 and U251 were detected with WB. The effect of miRNA-383-5p on the VEGFA activity was verified by dual-luciferase reporter assay. CCK-8 was used to examine the U87 and U251 cells' inhibition. Flow cytometry and transwell assays were used to detect cell apoptosis and invasion, respectively. RESULTS Our research data indicated overexpression of miRNA-383-5p to suppress malignant biological behavior, which was manifested as promoting the apoptosis of U87 and U251 cells and inhibiting invasion, proliferation, and metastasis. VEGFA is one of the downstream target genes of miRNA-383- 5p. miRNA-383-5p could inhibit the expression of VEGFA and Akt/mTOR signaling pathways. Overexpression of VEGFA can reverse the inhibitory effect of miRNA-383-5p and reactivate the Akt/mTOR signaling pathway. CONCLUSION Our results indicate that miRNA-383-5p functions as an anti-oncogene by inhibiting the VEGFA/Akt/mTOR signaling pathway in glioma cells. These data provide potential therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, China
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Zhen Wang
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, China
| | - Yao Fu
- Department of Neurosurgery, Yiyang Central Hospital, No.118 North Kangfu Road, Heshan District, Yiyang, 413000, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, China
- Changsha Medical University, No.1501 Leifeng Road, Wangcheng District, Changsha, 410219, Hunan, China
| |
Collapse
|
10
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
11
|
Liu C, Yu C, Song G, Fan X, Peng S, Zhang S, Zhou X, Zhang C, Geng X, Wang T, Cheng W, Zhu W. Comprehensive analysis of miRNA-mRNA regulatory pairs associated with colorectal cancer and the role in tumor immunity. BMC Genomics 2023; 24:724. [PMID: 38036953 PMCID: PMC10688136 DOI: 10.1186/s12864-023-09635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) which can act as post-transcriptional regulators of mRNAs via base-pairing with complementary sequences within mRNAs is involved in processes of the complex interaction between immune system and tumors. In this research, we elucidated the profiles of miRNAs and target mRNAs expression and their associations with the phenotypic hallmarks of colorectal cancers (CRC) by integrating transcriptomic, immunophenotype, methylation, mutation and survival data. RESULTS We conducted the analysis of differential miRNA/mRNA expression profile by GEO, TCGA and GTEx databases and the correlation between miRNA and targeted mRNA by miRTarBase and TarBase. Then we detected using qRT-PCR and validated the diagnostic value of miRNA-mRNA regulator pairs by the ROC, calibration curve and DCA. Phenotypic hallmarks of regulatory pairs including tumor-infiltrating lymphocytes, tumor microenvironment, tumor mutation burden, global methylation and gene mutation were also described. The expression levels of miRNAs and target mRNAs were detected in 80 paired colon tissue samples. Ultimately, we picked up two pivotal regulatory pairs (miR-139-5p/ STC1 and miR-20a-5p/ FGL2) and verified the diagnostic value of the complex model which is the combination of 4 signatures above-mentioned in 3 testing GEO datasets and an external validation cohort. CONCLUSIONS We found that 2 miRNAs by targeting 2 metastasis-related mRNAs were correlated with tumor-infiltrating macrophages, HRAS, and BRAF gene mutation status. Our results established the diagnostic model containing 2 miRNAs and their respective targeted mRNAs to distinguish CRCs and normal controls and displayed their complex roles in CRC pathogenesis especially tumor immunity.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Guoxin Song
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Xingchen Fan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Shuang Peng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Shiyu Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Xin Zhou
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Cheng Zhang
- Department of Science and Technology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Xiangnan Geng
- Department of Clinical Engineer, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China, Jiangsu
| | - Tongshan Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu
| | - Wenfang Cheng
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Wei Zhu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China, Jiangsu.
| |
Collapse
|
12
|
Zeng F, Xu Z, Zhuang P. Integrated analysis of SKA1-related ceRNA network and SKA1 immunoassays in HCC: A study based on bioinformatic. Medicine (Baltimore) 2023; 102:e34826. [PMID: 37746945 PMCID: PMC10519508 DOI: 10.1097/md.0000000000034826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a global health challenge. Effective biomarkers are required for early diagnosis to improve survival rates of patients with HCC. Spindle and kinetochore-associated complex subunits 1 (SKA1) is essential for proper chromosome segregation in the mitotic cell cycle. Previous studies have shown that overexpression of SKA1 is associated with a poor prognosis in various cancers. The expression, prognostic value, and clinical functions of SKA1 in HCC were evaluated with several bioinformatics web portals. Additionally, we identified target long non-coding RNAs (lncRNAs) and microRNAs by analyzing messenger RNA (mRNA)-miRNA and miRNA-lncRNA interaction data and elucidated the potential competing endogenous RNA (ceRNA) mechanism associated with SKA1. High SKA1 expression was associated with poor prognosis in patients with HCC. Furthermore, multivariate Cox regression analysis revealed that SKA1 expression was an independent prognostic factor for HCC. GO and KEGG analyses showed that SKA1 is related to the cell cycle checkpoints, DNA replication and repair, Rho GTPases signaling, mitotic prometaphase, and kinesins. Gene set enrichment analysis revealed that high levels of SKA1 are associated with cancer-promoting pathways. DNA methylation of SKA1 in HCC tissues was lower than that in normal tissues. Ultimately, the following 9 potential ceRNA-based pathways targeting SKA1 were identified: lncRNA: AC026401.3, Small Nucleolar RNA Host Gene 3 (SNHG3), and AC124798.1-miR-139-5p-SKA1; lncRNA: AC26356.1, Small Nucleolar RNA Host Gene 16 (SNHG16), and FGD5 Antisense RNA 1-miR-22-3p-SKA1; lncRNA: Cytoskeleton Regulator RNA (CYTOR), MIR4435-2 Host Gene, and differentiation antagonizing non-protein coding RNA-miR-125b-5p-SKA1. SKA1 expression levels significantly correlated with immune cell infiltration and immune checkpoint genes in the HCC tissues. SKA1 is a potential prognostic biomarker for HCC. This study provides a meaningful direction for research on SKA1-related mechanisms, which will be beneficial for future research on HCC-related molecular biological therapies and targeted immunotherapy.
Collapse
Affiliation(s)
- Fanjing Zeng
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Zhiqi Xu
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Peng Zhuang
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| |
Collapse
|
13
|
YU Z, LI J, JIANG J, LI Y, LIN L, XIA Y, WANG L. [miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1447-1459. [PMID: 37814858 PMCID: PMC10563106 DOI: 10.12122/j.issn.1673-4254.2023.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To determine whether miRNA-128-3p regulates malignant biological behavior of glioma cells by targeting KLHDC8A. METHODS Dual-luciferase reporter assays, qRT-PCR and Western blotting were used to verify the targeting of miRNA-128-3p to KLHDC8A. Edu assay, flow cytometry, Transwell assay and would healing assay were used to determine the effects of changes in miRNA-128-3p and KLHDC8A expression levels on malignant behavior of glioma cells. Rescue experiment was carried out to verify that miRNA-128-3p regulated glioma cell proliferation, apoptosis, invasion and migration by targeting KLHDC8A. RESULTS The expression level of KLHDC8A was significantly increased in high-grade glioma tissue and was closely related to a poor survival outcome of the patients. Overexpression of KLHDC8A promoted glioma cell proliferation, migration and invasion, and miRNA-128-3p overexpression inhibited proliferative and metastatic capacities of glioma cells. Mechanistically, KLHDC8A expression was directly modulated by miRNA-128-3p, which, by targeting KLHDC8A, inhibited malignant behavior of glioma cells. CONCLUSION Upregulation of miRNA-128-3p inhibits uncontrolled growth of glioma cells by negatively regulating KLHDC8A expression and its downstream effectors, suggesting that the miRNA-128-3p-KLHDC8A axis may serve as a potential prognostic indicator and a therapeutic target for developing new strategies for glioma treatment.
Collapse
Affiliation(s)
- Zhengtao YU
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Jiameng LI
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Junwen JIANG
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - You LI
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Long LIN
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Ying XIA
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Lei WANG
- Department of Neurosurgery, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China中南大学湘雅医学院附属肿瘤医院神经外科,湖南 长沙 410006
| |
Collapse
|
14
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
15
|
Zhao Y, Liu Y, Shi X. LncRNA AC012360.1 facilitates growth and metastasis by regulating the miR-139-5p/LPCAT1 axis in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2023; 38:2192-2203. [PMID: 37300846 DOI: 10.1002/tox.23856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in tumorigenesis and tumor progression. However, whether lncRNA AC012360.1 contributes to hepatocellular carcinoma (HCC) is unknown. In HCC tissues, differentially expressed lncRNAs were identified by bioinformatics. AC012360.1 level was validated and its role in HCC progression was investigated. Among the top 10 upregulated lncRNAs, AC012360.1 exhibited the greatest increase in HCC tissues. Additionally, AC012360.1 was upregulated in HCC tissues/cells. Moreover, AC012360.1 knockdown refrained cell proliferation/metastasis and tumor growth. Conversely, AC012360.1 overexpression showed an oncogenic role. AC012360.1 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) contained miR-139-5p binding sites. Furthermore, miR-139-5p silencing partially mitigated the role of AC012360.1 knockdown, while LPCAT1 knockdown partially abolished the tumor-promoting effect of AC012360.1 overexpression. In conclusion, AC012360.1 exhibited its oncogenic function in HCC through sponging miR-139-5p and upregulating LPCAT1 expression.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Sun T, Liu Z. MicroRNA-139-5p suppresses non-small cell lung cancer progression by targeting ATAD2. Pathol Res Pract 2023; 249:154719. [PMID: 37595446 DOI: 10.1016/j.prp.2023.154719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
MiR-139-5p is a suppressor in multiple types of cancer. However, whether miR-139-5p affects NSCLC is unknown. In this study, miR-139-5p expression in clinical samples was examined by real-time PCR and in situ hybridization (ISH). MiR-139-5p mimic was transfected to monitor NSCLC cell behaviors. Potential target was predicated using bioinformatics database. Next, whether miR-139-5p impacted cell behaviors via regulation of its predicted target gene were further evaluated. The result revealed that miR-139-5p was lower in NSCLC samples/cells. MiR-139-5p restrained A549 cell proliferation, accelerated apoptosis, and inhibited the β-catenin signaling. ATAD2 was a predicted target of miR-139-5p, and it was highly expressed in NSCLC tissues. ATAD2 overexpression abolished the miR-139-5p's anti-tumor effect on cell proliferation and apoptosis. TWS119 (a β-catenin signaling activator) partially reversed miR-139-5p overexpression-induced suppression of cell proliferation and promotion of cell apoptosis. In tumor xenografts, miR-139-5p restrained tumor growth. MiR-139-5p was a tumor suppressor in NSCLC by regulating the oncogene ATAD2 and β-catenin signaling. Our study provides a promising target for cancer treatment.
Collapse
Affiliation(s)
- Tong Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
17
|
Chaudhari U, Pohjolainen L, Ruskoaho H, Talman V. Genome-wide profiling of miRNA-gene regulatory networks in mouse postnatal heart development-implications for cardiac regeneration. Front Cardiovasc Med 2023; 10:1148618. [PMID: 37283582 PMCID: PMC10241105 DOI: 10.3389/fcvm.2023.1148618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background After birth, mammalian cardiomyocytes substantially lose proliferative capacity with a concomitant switch from glycolytic to oxidative mitochondrial energy metabolism. Micro-RNAs (miRNAs) regulate gene expression and thus control various cellular processes. Their roles in the postnatal loss of cardiac regeneration are however still largely unclear. Here, we aimed to identify miRNA-gene regulatory networks in the neonatal heart to uncover role of miRNAs in regulation of cell cycle and metabolism. Methods and results We performed global miRNA expression profiling using total RNA extracted from mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23. We used the miRWalk database to predict the potential target genes of differentially expressed miRNAs and our previously published mRNA transcriptomics data to identify verified target genes that showed a concomitant differential expression in the neonatal heart. We then analyzed the biological functions of the identified miRNA-gene regulatory networks using enriched Gene Ontology (GO) and KEGG pathway analyses. Altogether 46 miRNAs were differentially expressed in the distinct stages of neonatal heart development. For twenty miRNAs, up- or downregulation took place within the first 9 postnatal days thus correlating temporally with the loss of cardiac regeneration. Importantly, for several miRNAs, including miR-150-5p, miR-484, and miR-210-3p there are no previous reports about their role in cardiac development or disease. The miRNA-gene regulatory networks of upregulated miRNAs negatively regulated biological processes and KEGG pathways related to cell proliferation, while downregulated miRNAs positively regulated biological processes and KEGG pathways associated with activation of mitochondrial metabolism and developmental hypertrophic growth. Conclusion This study reports miRNAs and miRNA-gene regulatory networks with no previously described role in cardiac development or disease. These findings may help in elucidating regulatory mechanism of cardiac regeneration and in the development of regenerative therapies.
Collapse
|
18
|
Azhati B, Reheman A, Dilixiati D, Rexiati M. FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway. Arch Biochem Biophys 2023; 741:109604. [PMID: 37080415 DOI: 10.1016/j.abb.2023.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
As one of the most important demethylases for RNA N6-methyladenosine (m6A) modifications, fat mass and obesity-associated protein (FTO) plays anti-cancer role during prostate cancer (PC), but it is still unclear the detailed molecular mechanisms. Here, this study verified that FTO inactivated the tumor-accelerating PI3K/Akt/mTOR pathway to hamper PC development through regulating the downstream miR-139-5p/zinc finger protein 217 (ZNF217) axis. Through performing clinical analysis, it was revealed that FTO was apparently ablated in the cancerous tissues compared to the normal tissues collected from PC patients, and patients with high-expressed FTO predicted a favorable prognosis. Functional experiments confirmed that overexpression of FTO suppressed cell proliferation, mitosis, epithelial-mesenchymal transition (EMT), tumorigenesis and lung metastasis both in vitro and in vivo. The following mechanical experiments verified that FTO stabilized miR-139-5p to increase its expression levels in a m6A-dependent manner, and elevated miR-139-5p induced degradation of ZNF217 through binding to ZNF217 mRNA, resulting in the inactivation of the PI3K/Akt/mTOR signal pathway. Finally, our rescuing experiments confirmed that overexpressed FTO-induced tumor-suppressing effects on PC cells were abrogated by miR-139-5p ablation and ZNF217 overexpression. Collectively, this study firstly validated that FTO exerted its anti-tumor effects in PC through regulating the miR-139-5p/ZNF217 axis in a m6A-dependent manner, providing novel biomarkers for the advancement of anti-cancer agents for PC treatment.
Collapse
Affiliation(s)
- Baihetiya Azhati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, No.137 South Carp Hill Road, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Province, People's Republic of China.
| | - Aerziguli Reheman
- Department of Operating Room, The First Affiliated Hospital of Xinjiang Medical University, No.137 South Carp Hill Road, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Province, People's Republic of China.
| | - Diliyaer Dilixiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, No.137 South Carp Hill Road, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Province, People's Republic of China.
| | - Mulati Rexiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, No.137 South Carp Hill Road, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Province, People's Republic of China.
| |
Collapse
|
19
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
20
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
21
|
Yang Y, Ren L, Li W, Zhang Y, Zhang S, Ge B, Yang H, Du G, Tang B, Wang H, Wang J. GABAergic signaling as a potential therapeutic target in cancers. Biomed Pharmacother 2023; 161:114410. [PMID: 36812710 DOI: 10.1016/j.biopha.2023.114410] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
GABA is the most common inhibitory neurotransmitter in the vertebrate central nervous system. Synthesized by glutamic acid decarboxylase, GABA could specifically bind with two GABA receptors to transmit inhibition signal stimuli into cells: GABAA receptor and GABAB receptor. In recent years, emerging studies revealed that GABAergic signaling not only participated in traditional neurotransmission but was involved in tumorigenesis as well as regulating tumor immunity. In this review, we summarize the existing knowledge of the GABAergic signaling pathway in tumor proliferation, metastasis, progression, stemness, and tumor microenvironment as well as the underlying molecular mechanism. We also discussed the therapeutical advances in targeting GABA receptors to provide the theoretical basis for pharmacological intervention of GABAergic signaling in cancer treatment especially immunotherapy.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
22
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
23
|
The Role of Hyperexcitability in Gliomagenesis. Int J Mol Sci 2023; 24:ijms24010749. [PMID: 36614191 PMCID: PMC9820922 DOI: 10.3390/ijms24010749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.
Collapse
|
24
|
Zhipu N, Zitao H, Jichao S, Cuida M. Research advances in roles of microRNAs in nasal polyp. Front Genet 2022; 13:1043888. [PMID: 36506304 PMCID: PMC9732428 DOI: 10.3389/fgene.2022.1043888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs), a subset of endogenous RNAs highly conservative with short chains, play key regulatory role in the biological relevant events of the cells. Exosomes are extracellular vesicles like the plasma membrane components being able to deliver information molecules such as miRNA between cells and to regulate the fate of the target cells. The progression of chronic rhinosinusitis with nasal polyps (CRSwNP) is closely associated with significant alterations of miRNA levels in both cells and exosomes. RNA-binding proteins (RBPs) have been acknowledged to play important roles in intracellular miRNA transport to exosomes, and specific membrane proteins such as caveolin-1 critically involved in HNRNPA1 -mediated transport of miRNA to exosomes. Aberrant alteration in endogenous miRNA levels significantly contributes to the process of airway remodeling in the nasal tissue and to the occurrence and progression of inflammatory responses in CRSwNP. Exogenous miRNAs delivered via exosomes has also been shown to play an important role in activating macrophages or in regulating vascular permeability in the CRSwNP.This paper highlights the mechanism of RBP-mediated delivery of miRNAs to exosomes and the important contribution of endogenous miRNAs to the development of CRSwNP in response to inflammation and airway remodeling. Finally, we discuss the future research directions for regulation of the miRNAs to CRSwNP.Delivery of exogenous miRNAs by exosomes alters the endogenous miRNAs content in nasal mucosal epithelial cells or in associated inflammatory cells in the CRSwNP, and altered endogenous miRNAs affects the inflammatory response and airway remodeling, which then regulates the occurrence and progression of CRSwNP.RBPs and associated membrane proteins such as caveolin-1 may play a crucial role in the entry of exogenous miRNA into exosomes.
Collapse
Affiliation(s)
- Niu Zhipu
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Huo Zitao
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Sha Jichao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| | - Meng Cuida
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| |
Collapse
|
25
|
MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation. Curr Issues Mol Biol 2022; 44:5294-5311. [PMID: 36354672 PMCID: PMC9688839 DOI: 10.3390/cimb44110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.
Collapse
|
26
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Haiyilati A, Zhou L, Li J, Li W, Gao L, Cao H, Wang Y, Li X, Zheng SJ. Gga-miR-30c-5p Enhances Apoptosis in Fowl Adenovirus Serotype 4-Infected Leghorn Male Hepatocellular Cells and Facilitates Viral Replication through Myeloid Cell Leukemia-1. Viruses 2022; 14:v14050990. [PMID: 35632731 PMCID: PMC9146396 DOI: 10.3390/v14050990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent responsible for the hepatitis-hydropericardium syndrome (HHS) in chickens, leading to considerable economic losses to stakeholders. Although the pathogenesis of FAdV-4 infection has gained attention, the underlying molecular mechanism is still unknown. Here, we showed that the ectopic expression of gga-miR-30c-5p in leghorn male hepatocellular (LMH) cells enhanced apoptosis in FAdV-4-infected LMH cells by directly targeting the myeloid cell leukemia-1 (Mcl-1), facilitating viral replication. On the contrary, the inhibition of endogenous gga-miR-30c-5p markedly suppressed apoptosis and viral replication in LMH cells. Importantly, the overexpression of Mcl-1 inhibited gga-miR-30c-5p or FAdV-4-induced apoptosis in LMH cells, reducing FAdV-4 replication, while the knockdown of Mcl-1 by RNAi enhanced apoptosis in LMH cells. Furthermore, transfection of LMH cells with gga-miR-30c-5p mimics enhanced FAdV-4-induced apoptosis associated with increased cytochrome c release and caspase-3 activation. Thus, gga-miR-30c-5p enhances FAdV-4-induced apoptosis by directly targeting Mcl-1, a cellular anti-apoptotic protein, facilitating FAdV-4 replication in host cells. These findings could help to unravel the mechanism of how a host responds against FAdV-4 infection at an RNA level.
Collapse
Affiliation(s)
- Areayi Haiyilati
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linyi Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| |
Collapse
|
28
|
miR-138-5p Inhibits the Growth and Invasion of Glioma Cells by Regulating WEE1. Anal Cell Pathol (Amst) 2022; 2022:7809882. [PMID: 35127343 PMCID: PMC8816588 DOI: 10.1155/2022/7809882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Accumulating evidence has demonstrated the role of differentially expressed miRNAs in glioma progression. Our previous bioinformatics analyses revealed a role of miR-138-5p in glioma. miR-138-5p was decreased in various tumors, and He et al. found that miR-138-5p had an inhibitory effect on glioma cells in 2021. However, the role of miR-138-5p in the development of glioma and the underlying mechanism is unknown. In this study, we explored whether miR-138-5p affects the biology of glioma by regulating WEE1 expression. Methods. miR-138-5p and WEE1 G2 checkpoint kinase (WEE1) RNA and protein expression levels in glioma tissues were detected with qRT-PCR and western blotting, respectively. The effects of miR-138-5p and WEE1 on glioma cell migration and invasion were investigated using Transwell assays. CCK-8 assay was used to measure the effects of miR-138-5p and WEE1 on glioma cell proliferation. The mortality of glioma cells transfected with miR-138-5p and WEE1 was measured with flow cytometry. The relationship between miR-138-5p and WEE1 was explored using a luciferase reporter analysis. Results. Functional studies indicated that overexpression of miR-138-5p suppressed cell proliferation, migration, and invasion and promoted death in glioma cell lines. WEE1 was identified as a target of miR-138-5p, and overexpression of miR-138-5p significantly suppressed the levels of WEE1. Moreover, reintroduction of WEE1 partially abrogated miR-138-5p-induced suppression of motility and invasion in glioma cells. Conclusion. The low expression of miR-138-5p in glioma suggests a tumor suppressor role for this miRNA. miR-138-5p suppresses glioma progression by regulating WEE1. These data provide new insights into the molecular mechanism of glioma.
Collapse
|
29
|
Yu Z, Liu Y, Li Y, Zhang J, Peng J, Gong J, Xia Y, Wang L. miRNA-338-3p inhibits glioma cell proliferation and progression by targeting MYT1L. Brain Res Bull 2021; 179:1-12. [PMID: 34848272 DOI: 10.1016/j.brainresbull.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 01/06/2023]
Abstract
Glioma is a common and aggressive primary malignant brain tumor. MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of gene expression. Currently, miRNAs are considered to be useful biomarkers for the diagnosis and prognosis of glioma. Previously, we screened three differentially expressed miRNAs from Gene Expression Omnibus (GEO) database which included miRNA-338-3p. miRNA-338-3p is involved in tumor development in different cancers. However, in glioma, its function and its underlying mechanism remain unclear. We found that overexpression of miRNA-338-3p suppressed cell proliferation, migration, invasion, and promoted apoptosis of glioma in vitro. Myelin transcription factor 1-like (MYT1L) was found to be a direct target of miRNA-383-3p in glioma cells as the expression of MYT1L was inhibited by overexpressing miRNA-338-3p. Additionally, silencing MYT1L produced similar effects as overexpressing miRNA-338-3p in glioma cells. Overexpression of MYT1L also completely attenuated the inhibitory effect induced by miRNA-338-3p overexpression. These results suggest that the miRNA-338-3p/ MYT1L axis plays a critical role in the progression of glioma. Our study delineates one of the complex molecular mechanisms that drive the growth of glioma and may be useful in finding novel prognostic predictors and treatment targets in glioma. AVAILABILITY OF DATA AND MATERIALS: All data generated or analysed during this study are included in this published article.
Collapse
Affiliation(s)
- Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Yan Liu
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan road, Yuhua district, Changsha 410007, Hunan, China
| | - You Li
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jikun Zhang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jun Peng
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jianwu Gong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China.
| | - Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China.
| |
Collapse
|
30
|
Nan Y, Guo L, Zhen Y, Wang L, Ren B, Chen X, Lu Y, Yu K, Zhong Y, Huang Q. miRNA-451 regulates the NF-κB signaling pathway by targeting IKKβ to inhibit glioma cell growth. Cell Cycle 2021; 20:1967-1977. [PMID: 34463194 DOI: 10.1080/15384101.2021.1969496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is associated with a poor prognosis, and effective treatments are lacking. Our previous studies have shown that miRNA-451 is closely related to the development and progression of glioma. miRNA-451 is a tumor suppressor whose expression is negatively correlated with the WHO grades of gliomas, but its specific mechanism is still unclear. Research shows that NF-κB is highly expressed in early malignant glioma, and thus, the NF-κB signaling pathway has become an important target for the treatment of malignant glioma. Activation of IKK is a critical step in the activation of the classical NF-κB pathway. By performing a bioinformatics analysis, we found that IKKβ is a potential direct target of miRNA-451 in glioma. In this study, we transfected lentivirus expressing miRNA-451 to test the effect of miRNA-451 overexpression on malignant glioma cell lines and confirmed that IKKβ is a target gene of miRNA-451 by luciferase assay. By targeting IKKβ, MTT, cell invasion and wound-healing assays showed that cell proliferation, cell invasion and migration were significantly suppressed in the LV-miRNA-451 group. Western blotting results showed that the expression levels of IKKβ, p-p65, MMP-2, MMP-9, Cyclin D1, p16 and PCNA were significantly decreased in the LV-miRNA-451 group. In vivo, miRNA-451 significantly decreased glioma cell growth, and the survival of BALB/c-A nude mice was significantly prolonged. Immunohistochemistry showed that p-p65, Cyclin D1 and Ki67 expression was significantly reduced in the LV-miRNA-451 group. Taken together, these results suggest that miRNA-451 could regulate the NF-κB signaling pathway by targeting IKKβ, which inhibits glioma cell growth in vitro and in vivo. Therefore, this study may provide novel insight into miRNA-451-targeted therapy for glioma.
Collapse
Affiliation(s)
- Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liyun Guo
- Department of Hemodialysis Center, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yingwei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Zhong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|