1
|
Zhang H, Guan W, Zhou J. Advances in the Diagnosis of Latent Tuberculosis Infection. Infect Drug Resist 2025; 18:483-493. [PMID: 39882252 PMCID: PMC11776534 DOI: 10.2147/idr.s504632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025] Open
Abstract
Latent tuberculosis infection (LTBI) is a critical stage of tuberculosis infection in which Mycobacterium tuberculosis (MTB) is dormant and does not cause active disease. Traditionally, the most commonly used clinical methods for diagnosing LTBI have been the tuberculin skin test (TST) and the interferon-gamma release assay (IGRA). Recently, however, novel skin tests, molecular biology techniques, and cytokine biomarkers have been developed. This review summarizes the latest research on the diagnosis of LTBI, highlighting new tools and methods to improve detection and differentiation from active tuberculosis(ATB).
Collapse
Affiliation(s)
- Haiying Zhang
- School of Public Health at Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Weiwei Guan
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Jikun Zhou
- The Institute of Medical Research, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
2
|
Liu Y, Fang M, Yuan C, Yang Y, Yu L, Li Y, Hu L, Li J. Combining interferon-γ release assays and metagenomic next-generation sequencing for diagnosis of pulmonary tuberculosis: a retrospective study. BMC Infect Dis 2024; 24:1316. [PMID: 39558256 PMCID: PMC11575000 DOI: 10.1186/s12879-024-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Rapid diagnosis of pulmonary tuberculosis (PTB) is urgently needed. We aimed to improve diagnosis rates by combining tuberculosis-interferon (IFN)-γ release assays (TB-IGRA) with metagenomic next-generation sequencing (mNGS) for PTB diagnosis. METHODS A retrospective study of 29 PTB and 32 non-TB patients from our hospital was conducted between October 2022 and June 2023. Samples were processed for TB-IGRA and mNGS tests according to the manufacturer's protocol. RESULTS The levels of IFN-γ release in PTB patients were significantly higher than those in non-TB patients (604.15 ± 112.18 pg/mL, and 1.04 ± 0.38 pg/mL, respectively; p < 0.0001). Regarding presenting symptoms or signs, cough and thoracalgia were less common in PTB patients than in non-TB patients (p = 0.001 and p = 0.024, respectively). Total protein and albumin levels in the sera of PTB patients were significantly elevated compared to non-TB patients (p = 0.039 and p = 0.004, respectively). The area under the ROC curve (AUC) for TB-IGRA in PTB diagnosis was 0.939. With an optimal IFN-γ cut-off value of 14.3 pg/mL (Youden's index 0.831), sensitivity was 86.2% and specificity was 96.9%. ROC curve analysis for mNGS and TB-IGRA combined with mNGS showed AUCs of 0.879 and 1, respectively. The AUC of TB-IGRA combined with mNGS was higher than that of TB-IGRA and mNGS alone. CONCLUSIONS TB-IGRA combined with mNGS may be an effective method for diagnosing tuberculosis, and can be used in the clinical diagnosis of PTB.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Miaohong Fang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenxi Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Yang
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Yu
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yasheng Li
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Bhengu KN, Singh R, Naidoo P, Mpaka-Mbatha MN, Nembe-Mafa N, Mkhize-Kwitshana ZL. Cytokine Responses during Mycobacterium tuberculosis H37Rv and Ascaris lumbricoides Costimulation Using Human THP-1 and Jurkat Cells, and a Pilot Human Tuberculosis and Helminth Coinfection Study. Microorganisms 2023; 11:1846. [PMID: 37513018 PMCID: PMC10384037 DOI: 10.3390/microorganisms11071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Helminth infections are widespread in tuberculosis-endemic areas and are associated with an increased risk of active tuberculosis. In contrast to the pro-inflammatory Th1 responses elicited by Mycobacterium tuberculosis (Mtb) infection, helminth infections induce anti-inflammatory Th2/Treg responses. A robust Th2 response has been linked to reduced tuberculosis protection. Several studies show the effect of helminth infection on BCG vaccination and TB, but the mechanisms remain unclear. AIM To determine the cytokine response profiles during tuberculosis and intestinal helminth coinfection. METHODS For the in vitro study, lymphocytic Jurkat and monocytic THP-1 cell lines were stimulated with Mtb H37Rv and Ascaris lumbricoides (A. lumbricoides) excretory-secretory protein extracts for 24 and 48 h. The pilot human ex vivo study consisted of participants infected with Mtb, helminths, or coinfected with both Mtb and helminths. Thereafter, the gene transcription levels of IFN-γ, TNF-α, granzyme B, perforin, IL-2, IL-17, NFATC2, Eomesodermin, IL-4, IL-5, IL-10, TGF-β and FoxP3 in the unstimulated/uninfected controls, singly stimulated/infected and costimulated/coinfected groups were determined using RT-qPCR. RESULTS TB-stimulated Jurkat cells had significantly higher levels of IFN-γ, TNF-α, granzyme B, and perforin compared to unstimulated controls, LPS- and A. lumbricoides-stimulated cells, and A. lumbricoides plus TB-costimulated cells (p < 0.0001). IL-2, IL-17, Eomes, and NFATC2 levels were also higher in TB-stimulated Jurkat cells (p < 0.0001). Jurkat and THP-1 cells singly stimulated with TB had lower IL-5 and IL-4 levels compared to those singly stimulated with A. lumbricoides and those costimulated with TB plus A. lumbricoides (p < 0.0001). A. lumbricoides-singly stimulated cells had higher IL-4 levels compared to TB plus A. lumbricoides-costimulated Jurkat and THP-1 cells (p < 0.0001). TGF-β levels were also lower in TB-singly stimulated cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). IL-10 levels were lower in TB-stimulated Jurkat and THP-1 cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). Similar results were noted for the human ex vivo study, albeit with a smaller sample size. CONCLUSIONS Data suggest that helminths induce a predominant Th2/Treg response which may downregulate critical Th1 responses that are crucial for tuberculosis protection.
Collapse
Affiliation(s)
- Khethiwe N Bhengu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Miranda N Mpaka-Mbatha
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Nomzamo Nembe-Mafa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| |
Collapse
|
5
|
Chin KL, Anibarro L, Sarmiento ME, Acosta A. Challenges and the Way forward in Diagnosis and Treatment of Tuberculosis Infection. Trop Med Infect Dis 2023; 8:tropicalmed8020089. [PMID: 36828505 PMCID: PMC9960903 DOI: 10.3390/tropicalmed8020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Luis Anibarro
- Tuberculosis Unit, Infectious Diseases and Internal Medicine Department, Complexo Hospitalario Universitario de Pontevedra, 36071 Pontevedra, Spain
- Immunology Research Group, Galicia Sur Health Research Institute (IIS-GS), 36312 Vigo, Spain
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| |
Collapse
|