1
|
Liu YQ, Zheng ZJ, Fang WK, Li YS, Li C, Yang M, Han DC, Zhou JH, Xie YH, Zhang YY, Kang ZY, Xu YW, Xie JJ. Interplay and cooperation between GLI2 and master transcription factors promote progression of esophageal squamous cell carcinoma. Am J Hum Genet 2025; 112:1039-1061. [PMID: 40157366 DOI: 10.1016/j.ajhg.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
The establishment of gene expression programs that drive cell identity is governed by tightly regulated transcription factors (TFs) that engage in auto- and cross-regulation in a feedforward manner, forming core regulatory circuitries (CRCs). Here, we identify and validate an important interconnected CRC formed by three master TFs-GLI2, TP63, and RUNX1-in esophageal squamous cell carcinoma (ESCC). Furthermore, master TFs co-bind to their own and each other's super-enhancers, forming an interconnected auto-regulatory loop. Mechanistically, these master TFs occupy the majority of ESCC super-enhancers and cooperatively orchestrate the ESCC transcription program. Functionally, GLI2, a master TF, is essential for ESCC viability, migration, invasion, and the growth of xenograft tumors. Moreover, the overexpression of GLI2 is significantly associated with shorter overall survival of patients with ESCC. Downstream, this CRC apparatus coordinately regulates gene expression networks in ESCC, controlling important cancer-promoting pathways, including Hedgehog, glycolysis, and epidermal growth factor receptor signaling pathways. Together, these findings offer significant mechanistic insights into the transcriptional dysregulation in ESCC and recognize GLI2 as a potential therapeutic target and prognostic marker for ESCC. More importantly, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Clinical Laboratory Medicine, Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, the Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Jun Zheng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Biochemistry & Molecular Biology, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yan-Shang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Chun Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Min Yang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Dong-Chen Han
- Beijing University of Chinese Medicine, Fangshan 102400, China
| | - Jun-Hua Zhou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ying-Hua Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yu-Ying Zhang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Zhuo-Ying Kang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, the Cancer Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Biochemistry & Molecular Biology, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, P.R. China.
| |
Collapse
|
2
|
Zhu W, Sun J, Jing F, Xing Y, Luan M, Feng Z, Ma X, Wang Y, Jia Y. GLI2 inhibits cisplatin sensitivity in gastric cancer through DEC1/ZEB1 mediated EMT. Cell Death Dis 2025; 16:204. [PMID: 40133270 PMCID: PMC11937514 DOI: 10.1038/s41419-025-07564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Cisplatin (CDDP) based chemotherapy has emerged as the predominant therapeutic regimen for patients with advanced gastric cancer (GC). However, its efficacy is dampened by the development of chemoresistance, which results in poor prognosis of patients. GLI2, a key transcription factor in the Hedgehog (Hh) signaling pathway, is regarded as a target for cancer therapy. However, the significance of GLI2 for CDDP resistance in GC has not been well established. Here, we show that GLI2 expression was upregulated in EMT-type GC and associated with poor prognosis. GLI2 promotes proliferation, migration, and CDDP resistance of GC cells by inducing EMT. In terms of mechanism, GLI2 binds to the promoter region of DEC1 and enhances its expression, thereby co-transcriptionally regulating ZEB1 expression. Animal experiments have demonstrated that both GLI2 knockdown and GLI2 inhibitor significantly enhance CDDP sensitivity in GC. Our data not only identify a novel GLI2/DEC1/ZEB1/EMT pathway in GC CDDP resistance but also provide novel strategies to treat GC in the future.
Collapse
Affiliation(s)
- Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Jingguo Sun
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Fubo Jing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, People's Republic of China.
| |
Collapse
|
3
|
Hu M, Zhang M, Qi X, Yuan L, Wu Z, Tian Y, Qi A. Silencing the lncRNA EBLN3P Improves Prognosis in Patients with Invasive Breast Cancer by Directly Targeting miR-144-3p. J Environ Pathol Toxicol Oncol 2025; 44:1-9. [PMID: 39462444 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The incidence of breast cancer, a malignant tumor that causes more harm to women, is increasing year by year, affecting women at a younger age. This paper describes the possible practical significance of lncRNA EBLN3P (EBLN3P) in predicting the prognosis of invasive breast cancer. EBLN3P and miR-144-3p levels in tissues and cells were detected by real-time quantitative PCR (RT-qPCR). The association between EBLN3P expression and prognosis of invasive breast cancer was investigated using Cox multivariate regression and Kaplan-Meier curve. The growth efficacy of EBLN3P expression on invasive breast cancer cells was evaluated by Cell Counting kit-8 (CCK-8) method and Transwell method, and the mechanism of EBLN3P targeting miR-144-3p was further studied. EBLN3P was elevated in invasive breast cancer, whereas survival rates were lower in patients with high EBLN3P level. EBLN3P directly targeted miR-144-3p to participate in the mechanism of invasive breast cancer, and EBLN3P knockdown had an inhibitory effect on tumor cells. Silencing EBLN3P inhibited the advancement of invasive breast cancer and was expected to be a promising therapeutic target for clinical intervention and prognosis.
Collapse
Affiliation(s)
- Miao Hu
- Cancer Treatment Center, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Min Zhang
- Special Service Personnel Health Management Department, Chinese People's Liberation Army Strategic Support Force Special Medical Center, Beijing 100101, China
| | - Xunjing Qi
- Clinical Laboratory, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Lijuan Yuan
- Clinical Laboratory, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Zhijiao Wu
- Clinical Laboratory, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | | | - Anning Qi
- Department of Laboratory, Nanjing LuHe People's Hospital, Nanjing, 211500, China
| |
Collapse
|
4
|
Liu X, Liu D, Tan C, Wang J. Systemic immune profiling analysis identifying M2-TAM related genes predicted colon cancer prognosis and chemotherapy responses. Medicine (Baltimore) 2024; 103:e40979. [PMID: 39969348 PMCID: PMC11688056 DOI: 10.1097/md.0000000000040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/27/2024] [Indexed: 02/20/2025] Open
Abstract
Colon cancer (COAD) poses great challenges to clinical treatment due to its heterogeneity and complex immune microenvironment. M2-like macrophages significantly influence COAD's onset, progression, and treatment. Yet, existing M2-like macrophage markers are limited in prognostic efficacy, prompting the exploration of new M2 signatures. Extensive data analysis aimed to unveil prognosis-associated M2-derived signatures. Bulk transcriptome, single-cell RNA sequencing, and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus databases for patients with COAD were amassed. Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts identified immune cell infiltration, and the Kaplan-Meier test identified crucial immune populations associated with prognosis. Genetic signatures linked to M2 tumor-associated macrophage were crafted utilizing weighted gene coexpression network analysis, least absolute shrinkage and selection operator, and Cox regression. The M2 tumor-associated macrophage gene signature was validated in GSE17536. The expression profile of the M2 gene signature was investigated in single-cell RNA sequencing dataset GSE166555. Systemic immune profile identified that M2-like macrophage has the most significant prognostic significance in The Cancer Genome Atlas-COAD. The core genes related to M2 macrophage infiltration were extracted by weighted gene coexpression network analysis. Least absolute shrinkage and selection operator-stepwise COX regression-derived M2-derived signatures (snail family zinc finger 1, gastrin-releasing peptide, gamma-aminobutyric acid type A receptor delta subunit, cluster of differentiation 1B, poly(A)-binding protein cytoplasmic 2, manic fringe, and death-associated protein kinase 1) as a risk model, which was confirmed as independent prognosis factors, validated by external dataset. This M2-based prognostic model reflected M2 macrophage infiltration. Mendelian randomization established cytotoxic T lymphocyte associate protein-4 and cluster of differentiation 274 immune checkpoints' causality with COAD. In conclusion, our study developed novel markers for discriminating M2-like macrophages and predicting the prognosis of patients with COAD, offering fresh perspectives for clinical interventions.
Collapse
Affiliation(s)
- Xiaopei Liu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Liu
- Department of Anorectal, Xi’an Hospital of Traditional Chinese Medicine, Xianyang, China
| | - Cong’e Tan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiehong Wang
- Department of Gastroenterology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Xiu C, Deng X, Deng D, Zhou T, Jiang C, Wu D, Qian Y. miR-144-3p Targets GABRB2 to Suppress Thyroid Cancer Progression In Vitro. Cell Biochem Biophys 2024; 82:3585-3595. [PMID: 39093515 DOI: 10.1007/s12013-024-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Thyroid cancer, as one of the most common cancers in many countries, has attracted increasing attention, but its pathogenesis is still unclear. This research explored the effects of miR-144-3p and GABRB2 on thyroid cancer cells and the underlying mechanism. Gene expression data was obtained from the GEO database to analyze differential expression of mRNAs and miRNAs in patients with thyroid cancer. CCK-8, transwell, scratch, and flow cytometry assays were performed to detect cell proliferation, invasion, migration, and apoptosis, respectively. Dual-luciferase reporters were used to detect the binding of miR-144-3p to GABRB2. GABRB2 was highly expressed and miR-144-3p was underexpressed in thyroid cancer. In thyroid cancer cells, inhibiting GABRB2 or upregulating miR-144-3p reduced proliferation, invasion, and migration and increased apoptotic rates; GABRB2 overexpression or miR-144-3p inhibition brought about the opposite results. miR-144-3p targeted GABRB2 and negatively regulated its expression. PI3K/AKT activation was reduced in thyroid cancer cells overexpressing miR-144-3p. GABRB2 overexpression partially mitigated the tumor-suppressive effect of miR-144-3p overexpression. In conclusion, miR-144-3p targets GABRB2 to inhibit PI3K/AKT activation, thereby inhibiting the progression of thyroid cancer in vitro.
Collapse
Affiliation(s)
- Cheng Xiu
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Xiaocong Deng
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Da Deng
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Tao Zhou
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Chuiguang Jiang
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Di Wu
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Yong Qian
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China.
| |
Collapse
|
6
|
Sun QH, Kuang ZY, Zhu GH, Ni BY, Li J. Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers. World J Gastrointest Oncol 2024; 16:300-313. [PMID: 38425402 PMCID: PMC10900144 DOI: 10.4251/wjgo.v16.i2.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
MicroRNAs (miRNAs) have received much attention in the past decade as potential key epigenomic regulators of tumors and cancer stem cells (CSCs). The abnormal expression of miRNAs is responsible for different phenotypes of gastric cancer stem cells (GCSCs). Some specific miRNAs could be used as promising biomarkers and therapeutic targets for the identification of GCSCs. This review summarizes the coding process and biological functions of miRNAs and demonstrates their role and efficacy in gastric cancer (GC) metastasis, drug resistance, and apoptosis, especially in the regulatory mechanism of GCSCs. It shows that the overexpression of onco-miRNAs and silencing of tumor-suppressor miRNAs can play a role in promoting or inhibiting tumor metastasis, apart from the initial formation of GC. It also discusses the epigenetic regulation and potential clinical applications of miRNAs as well as the role of CSCs in the pathogenesis of GC. We believe that this review may help in designing novel therapeutic approaches for GC.
Collapse
Affiliation(s)
- Qian-Hui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zi-Yu Kuang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Guang-Hui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bao-Yi Ni
- Department of Oncology, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
7
|
Zhang Y, Xie W, Zheng W, Qian X, Deng C. Exosome-mediated circGMPS facilitates the development of gastric cancer cells through miR-144-3p/PUM1. Cytotechnology 2024; 76:53-68. [PMID: 38304630 PMCID: PMC10828494 DOI: 10.1007/s10616-023-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/07/2023] [Indexed: 02/03/2024] Open
Abstract
In recent years, gastric cancer (GC) is still one of the major public health burdens in the world. It is reported that exosome circular RNA (circRNA) is involved in the GC progression. However, the function and potential mechanism of circGMPS in GC remains unclear and needs further exploration. In this study, we isolated and identified exosomes from serum by TEM, NTA analysis and Western blot. RNA expression was evaluated by qRT-PCR. Western blot was employed to examine protein expression. Cell proliferation was measured using CCK-8. Transwell assay was adopted to analyze cell migration and invasion. The relationship between genes was explored through bioinformatics analysis, dual-luciferase reporter gene assay and spearman correlation coefficient. We found that circGMPS was elevated in GC exosomes, tissues and cells. Poor prognosis of GC patients was related to high circGMPS expression. Both exosome co-culture with cells and insertion of circGMPS clearly promoted cell progression. Mechanically, circGMPS sponged miR-144-3p to regulate PUM1. Inhibition of PUM1 or miR-144-3p overexpression inhibited the malignant GC cell progression. Our data confirmed that exosome-derived circGMPS boosted malignant progression by miR-144-3p/PUM1 axis in GC cells, providing strong evidences for circGMPS as a clinical biomarker of GC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00597-9.
Collapse
Affiliation(s)
- Yuexin Zhang
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Wenrui Xie
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Wenhong Zheng
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Xiaoying Qian
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical College, Haikou, 570100 Hainan China
| | - Chengwei Deng
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| |
Collapse
|
8
|
Yu Y, Tan C, Ding L, Zhu Z, Zhang G, Long C. ZIC2 accelerates growth and stemness in gastric cancer through the Wnt/β-catenin pathway. Tissue Cell 2023; 85:102222. [PMID: 37774522 DOI: 10.1016/j.tice.2023.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
In the digestive system, gastric cancer (GC) is one of the most usual pernicious tumors. Despite great improvement has been created in treatment, it is still the second major reason of cancer-relevant death. Thus, further researches are required to explicate the latent molecular mechanisms and look for novel biomarkers. ZIC2 has been confirmed to be a facilitator in diversified cancers. However, the particular regulatory of ZIC2 in GC needs further investigation. In this work, it was notarized that ZIC2 expression was up-regulated in GC, and ZIC2 knockdown weakened GC cell proliferation. Moreover, ZIC2 suppression retarded cell migration and invasion. Additionally, results from the spheroid formation assay and western blot revealed that ZIC2 silencing reduced cell stemness. Next, we discovered that ZIC2 inhibition restrain the Wnt/β-catenin pathway through modulating β-catenin, Axin, c-myc and MMP-7 expression. At last, it was uncovered that ZIC2 repression relieved tumor growth in vivo. In summary, ZIC2 served as a promotive regulator in GC, aggravating growth and stemness in GC progression through the Wnt/β-catenin pathway. This discovery hinted that ZIC2 may be a valid target for anticancer treatment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Chao Tan
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Zhen Zhu
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Gong Zhang
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Cong Long
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China.
| |
Collapse
|
9
|
Li Y, Hong X, Zhai J, Liu Y, Li R, Wang X, Zhang Y, Lv Q. Novel circular RNA circ-0002727 regulates miR-144-3p/KIF14 pathway to promote lung adenocarcinoma progression. Front Cell Dev Biol 2023; 11:1249174. [PMID: 38033864 PMCID: PMC10686231 DOI: 10.3389/fcell.2023.1249174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective: Circular RNAs (circRNAs) have been shown to participate in various cancers via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains elusive. Methods: The transcriptome data and corresponding clinical information of lung adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed genes (DEgenes) were identified and further used to constructed a circRNA-associated competing endogenous RNA (ceRNA) network. Real-Time qPCR analysis was conducted to examine gene expression at transcriptional level. The regulatory mechanisms of circRNA-miRNA-gene were validated by dual-luciferase reporter array and RNA pull-down assay. Cell growth, migration and invasion were evaluated by CCK-8 assay, colony formation assay and transwell assay, respectively. Results: Based on public microarray data, we systematically constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs and 49 DEgenes. Among the ceRNA network, we found that circ-0002727 was a key regulatory and was further confirmed to be upregulated in LUAD cancer cells. Subsequently, we found that silencing of circ-0002727 significantly suppressed the LUAD cell proliferation, migration and invasion in vitro. Mechanistically, we showed that circ-0002727 could competitively bind miR-144-3p to enhance the KIF14 expression in LUAD cells. Rescue assays indicated that circ-0002727 could regulate LUAD cell proliferation through modulating miR-144-3p/KIF14 pathway. Besides, KIF14 expression level was positively correlated with TNM stage and metastasis, and patients with high KIF14 expression suffered poor prognosis. Conclusion: Taken together, our study revealed that circ-0002727 could act as a ceRNA to regulate LUAD progression via modulating miR-144-3p/KIF14 pathway, providing a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Xiu Hong
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Xiuli Wang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou, China
| | - Qian Lv
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
10
|
Liu NN, Huang YP, Shao YB, Fan XF, Sun HY, Wang TR, Yao T, Chen XY. The regulatory role and mechanism of lncTUG1 on cartilage apoptosis and inflammation in osteoarthritis. Arthritis Res Ther 2023; 25:106. [PMID: 37340458 DOI: 10.1186/s13075-023-03087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Long-stranded non-coding RNA TUG1 is lowly expressed in osteoarthritic chondrocytes. This study aimed to elucidate the role of TUG1 in osteoarthritic cartilage damage and the underlying mechanisms. METHODS Combined database analysis, using primary chondrocytes as well as the C28/I2 cell line, was performed by qRT-PCR, Western blotting, and immunofluorescence to determine the expression of TUG1, miR-144-3p, DUSP1, and other target proteins. Dual luciferase reporter gene and RIP to verify direct interaction of TUG1 with miR-144-3-p and miR-144-3-p with DUSP1, Annexin V-FITC/PI double staining to detect apoptosis. CCK-8 to detect cell proliferation. The biological significance of TUG1, miR-144-3p, and DUSP1 was assessed in vitro experiments using siRNA for TUG1, mimic and repressor for miR-144-3p, and overexpression plasmid for DUSP1. In this study, all data were subjected to a t-test or one-way analysis of variance with a p-value < 0.05 as the cutoff. RESULTS TUG1 expression was closely associated with osteoarthritic chondrocyte damage, and knockdown of TUG1 significantly promoted chondrocyte apoptosis and inflammation. In the present study, we found that TUG1 inhibited chondrocyte apoptosis and inflammation by competitively binding miR-144-3p, deregulating the negative regulatory effect of miR-144-3p on DUSP1, promoting DUSP1 expression, and inhibiting the p38 MAPK signaling pathway. CONCLUSIONS In conclusion, our study clarifies the role of the ceRNA regulatory network of TUG1/miR-144-3p/DUSP1/P38 MAPK in OA cartilage injury and provides an experimental and theoretical basis for genetic engineering tools to promote articular cartilage repair.
Collapse
Affiliation(s)
- Nan-Nan Liu
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yan-Ping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, No. 632 Furong Road, Hefei, 230601, Anhui Province, China
| | - Yu-Bao Shao
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xue-Fei Fan
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - He-Yan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Tao-Rong Wang
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Tao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, No. 390 Huaihe Road, Hefei, 230061, Anhui Province, China.
| | - Xiao-Yu Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
11
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Li K, Sun S, Lu Y, Liang W, Xu X, Zhang H, Chang Z, Wang C, Gao Y, Chen L. MT1M regulates gastric cancer progression and stemness by modulating the Hedgehog pathway protein GLI1. Biochem Biophys Res Commun 2023; 670:63-72. [PMID: 37276792 DOI: 10.1016/j.bbrc.2023.05.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Gastric cancer (GC) is a highly prevalent and aggressive malignancy with a poor prognosis. Recent evidence suggested that metallothionein 1 M (MT1M) may play a critical role in cancer development, progression, and drug resistance; however, its role in GC remains largely unknown. In this study, we investigated the expression and function of MT1M in GC both in vitro and in vivo. We found that MT1M expression was significantly downregulated in GC tissues and cell lines. Decreased expression of MT1M was associated with worse clinical prognosis, particularly in patients treated with 5-fluorouracil. Low expression of MT1M was indicative of poor overall survival (OS, HR 0.56 [95% CI 0.37-0.84], P < 0.005), first progression survival (FP, HR 0.54 [95% CI 0.36-0.79], P < 0.005), and post-progression survival (PPS, HR 0.65 [95% CI 0.45-0.94], P < 0.05). We also demonstrated that overexpression of MT1M inhibited cell proliferation and induced apoptosis in GC cells and in tumor xenografts, and it improved chemosensitivity to 5-fluorouracil. Furthermore, we found that MT1M overexpression could inhibit stem cell characteristics by targeting GLI1 and affecting GLI1 ubiquitination. Collectively, these findings indicated that MT1M may act as a tumor suppressor in GC and could serve as a potential therapeutic target to attenuate stemness and chemotherapy resistance of GC.
Collapse
Affiliation(s)
- Kai Li
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuyang Sun
- Department of Gastroenterology, Affiliated Beijing Chest Hospital of Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yixun Lu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinxin Xu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengyao Chang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chuang Wang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
14
|
Garcia-Becerra N, Aguila-Estrada MU, Palafox-Mariscal LA, Hernandez-Flores G, Aguilar-Lemarroy A, Jave-Suarez LF. FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes. Cancers (Basel) 2023; 15:cancers15020347. [PMID: 36672296 PMCID: PMC9856939 DOI: 10.3390/cancers15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer among women; the main predisposing factor is persistent infection by high-risk human papillomavirus (hr-HPV), mainly the 16 or 18 genotypes. Both hr-HPVs are known to manipulate the cellular machinery and the immune system to favor cell transformation. FOXP3, a critical transcription factor involved in the biology of regulatory T cells, has been detected as highly expressed in the tumor cells of CC patients. However, its biological role in CC, particularly in the keratinocytes, remained unclarified. Therefore, this work aimed to uncover the effect of FOXP3 on the biology of the tumoral cells. First, public databases were analyzed to identify the FOXP3 expression levels and the transcribed isoforms in CC and normal tissue samples. The study's findings demonstrated an increased expression of FOXP3 in HPV16+ CC samples. Additionally, the FOXP3Δ2 variant was detected as the most frequent splicing isoform in tumoral cells, with a high differential expression level in metastatic samples. However, the analysis of FOXP3 expression in different CC cell lines, HPV+ and HPV-, suggests no relationship between the presence of HPV and FOXP3 expression. Since the variant FOXP3Δ2Δ7 was found highly expressed in the HPV16+ SiHa cell line, a model with constitutive expression of FOXP3Δ2Δ7 was established to evaluate its role in proliferation, migration, and cell division. Finally, RNAseq was performed to identify differentially expressed genes and enriched pathways modulated by FOXP3Δ2Δ7. The exogenous expression of FOXP3Δ2Δ7 promotes cell division, proliferation, and migration. The transcriptomic analyses highlight the upregulation of multiple genes with protumor activities. Moreover, immunological and oncogenic pathways were detected as highly enriched. These data support the hypothesis that FOXP3Δ2Δ7 in epithelial cells induces cancer-related hallmarks and provides information about the molecular events triggered by this isoform, which could be important for developing CC.
Collapse
Affiliation(s)
- Natalia Garcia-Becerra
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Marco Ulises Aguila-Estrada
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luis Arturo Palafox-Mariscal
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Georgina Hernandez-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| | - Luis Felipe Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| |
Collapse
|
15
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
17
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
18
|
Li P, Xiao W. Circ_0005758 impedes gastric cancer progression through miR-1229-3p/GCNT4 feedback loop. Toxicol In Vitro 2022; 85:105454. [PMID: 35970245 DOI: 10.1016/j.tiv.2022.105454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/13/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) have been reported to have roles in the carcinogenesis of gastric cancer (GC). Circ_0005758 was discovered to be decreased in GC, here, the detailed functions and molecular mechanism of circ_0005758 in GC progression were investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure the levels of genes and proteins. The biological functions of circ_0005758 on GC progression were investigated by using in vitro assays, including 5-ethynyl-2'-deoxyuridine (EDU), transwell, tube formation and flow cytometry, and in vivo murine xenograft model. The binding between miR-1229-3p and circ_0005758 or GCNT4 (Glucosaminyl (N-Acetyl) Transferase 4) was confirmed using dual-luciferase reporter assay and pull-down assay. Circ_0005758 expression was decreased in GC tissues and cells, re-expression of circ_0005758 induced apoptosis and suppressed proliferation, migration, invasion and angiogenesis in GC cells in vitro, and impeded xenograft tumor growth in nude mice. Mechanistically, circ_0005758 sequestered miR-1229-3p to release GCNT4 expression, indicating the circ_0005758/miR-1229-3p/GCNT4 competing endogenous RNA (ceRNA) network GC cells. Besides, an increased miR-1229-3p level and a decreased GCNT4 expression were observed in GC. Rescue experiments demonstrated that miR-1229-3p up-regulation or GCNT4 down-regulation attenuated the anticancer effects of circ_0005758 re-expression on GC cells. Circ_0005758 acts as a tumor suppressor to impede gastric cancer progression via miR-1229-3p/GCNT4 axis, implying that therapeutic targeting of circ_0005758 may better to prevent gastric cancer.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Gastroenterology, the First Affiliated Hospital of Hengyang Medical College, University of South China, China
| | - Weisheng Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Hengyang Medical College, University of South China, China.
| |
Collapse
|
19
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Yang Y, Meng WJ, Wang ZQ. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front Oncol 2022; 12:960539. [PMID: 36185219 PMCID: PMC9520244 DOI: 10.3389/fonc.2022.960539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies and the most common causes of cancer-related mortality worldwide. Furthermore, the prognosis of advanced GC remains poor even after surgery combined with chemoradiotherapy. As a small group of cells with unlimited differentiation and self-renewal ability in GC, accumulating evidence shows that GC stem cells (GCSCs) are closely associated with the refractory characteristics of GC, such as drug resistance, recurrence, and metastasis. With the extensive development of research on GCSCs, GCSCs seem to be promising therapeutic targets for GC. However, the relationship between GCSCs and GC is profound and intricate, and its mechanism of action is still under exploration. In this review, we elaborate on the source and key concepts of GCSCs, systematically summarize the role of GCSCs in GC and their underlying mechanisms. Finally, we review the latest information available on the treatment of GC by targeting GCSCs. Thus, this article may provide a theoretical basis for the future development of the novel targets based on GCSCs for the treatment of GC.
Collapse
|
21
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
22
|
Song Y, Kelava L, Zhang L, Kiss I. Microarray data analysis to identify miRNA biomarkers and construct the lncRNA-miRNA-mRNA network in lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30393. [PMID: 36086747 PMCID: PMC10980501 DOI: 10.1097/md.0000000000030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/25/2022] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs), regulatory noncoding RNAs, are involved in gene regulation and may play a role in cancer development. The aim of this study was to identify miRNAs involved in lung adenocarcinoma (LUAD) using bioinformatics analysis. MiRNA (GSE135918), mRNA (GSE136043) and lncRNA (GSE130779) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed miRNAs (DEMis), mRNAs (DEMs), and lncRNA (DELs) in LUAD. We used DEMs for functional enrichment analysis. MiRNA expression quantification from The Cancer Genome Atlas (TCGA) was used to validate DEMis. LncBase Predicted v.2, Targetscan, and MiRBase were used to predict lncRNAs and mRNAs. The LUAD data in TCGA were used for overall survival (OS) analysis. We screened the downregulation of 8 DEMis and upregulation of 6 DEMis, and found that 70 signal pathways changed. We chose 3 relevant signaling pathways in lung cancer development, WNT, PI3K-Akt, and Notch, and scanned for mRNAs involved in them that are potential targets of these miRNAs. Then a lncRNA-miRNA-mRNA network was constructed. We also found 7 miRNAs that were associated with poor OS in LUAD. Low expression level of hsa-miR-30a was highly associated with poor OS in LUAD (P < .001) and the target genes of hsa-miR-30a-3p were abundant in the Wnt and AKT signaling pathways. In addition, our results reported for the first time that hsa-miR-3944 and hsa-miR-3652 were highly expressed in LUAD. And the high expression level of hsa-miR-3944 was associated with poor OS (P < .05). Hsa-miR-30a-3p may suppress the occurrence and progression of lung cancer through Wnt and AKT signaling pathways and become a good biomarker in LUAD. Hsa-miR-3944 and hsa-miR-3652 may serve as new biomarkers in LUAD.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti str 12, Pécs 7624, Hungary
| | - Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Vasvári Pál utca 4, Pécs 7622, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| |
Collapse
|
23
|
Han X, Li B. The emerging role of noncoding RNAs in the Hedgehog signaling pathway in cancer. Biomed Pharmacother 2022; 154:113581. [PMID: 36037783 DOI: 10.1016/j.biopha.2022.113581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hedgehog (HH), a conserved signaling pathway, is involved in embryo development, organogenesis, and other biological functions. Dysregulation and abnormal activation of HH are involved in tumorigenesis and tumor progression. With the emergence of interest in noncoding RNAs, studies on their involvement in abnormal regulation of biological processes in tumors have been published one after another. In this review, we focus on the crosstalk between noncoding RNAs and the HH pathway in tumors and elaborate the mechanisms by which long noncoding RNAs and microRNAs regulate or are regulated by HH signaling in cancer. We also discuss the interaction between noncoding RNAs and the HH pathway from the perspective of cancer hallmarks, presenting this complex network as concisely as possible and organizing ideas for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China. libo--
| |
Collapse
|
24
|
Yuan D, Guo T, Qian H, Ge H, Zhao Y, Huang A, Wang X, Cao X, Zhu D, He C, Yu H. Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Dev Res 2022; 83:1383-1393. [PMID: 35808943 DOI: 10.1002/ddr.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Ovarian cancer is one of the three major gynecological malignancies. It has been reported that Icariside II was able to block the occurrence and development of ovarian cancer. However, the detailed mechanism by which Icariside II regulates the development of ovarian cancer is widely unknown. EdU staining and transwell assays were applied to detect the proliferation, migration, and invasion of ovarian cancer cells. Next, the relationship between miR-144-3p and IGF2R was verified by the dual-luciferase reporter assay. Moreover, in vivo animal model was constructed to verify the effect of Icariside II on the development of ovarian cancer. Icariside II notably inhibited the proliferation, migration, and invasion and induced the apoptosis of ovarian cancer cells. Additionally, Icariside II markedly increased the level of miR-144-3p in ovarian cancer cells. Moreover, IGF2R was targeted by miR-144-3p directly. Icariside II significantly decreased the expression of IGF2R and the phosphorylation level of AKT and mTOR in ovarian cancer cells, which were partially reversed by miR-144-3p inhibitor. Meanwhile, Icariside II remarkably promoted the autophagy of ovarian cancer cells, as confirmed by the increased expression of Beclin-1 and ATG-5 and decreased expression of p62; however, co-treatment with miR-144-3p inhibitor notably decreased autophagy. Furthermore, the result of animal study suggested Icariside II notably inhibited ovarian tumor growth as well. Collectively, Icariside II could suppress the tumorigenesis and development of ovarian cancer by promoting autophagy via miR-144-3p/IGF2R axis. These results may be beneficial for future studies on the use of Icariside II to treat ovarian cancer.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Center for Molecular Medicine, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Aihua Huang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiaosu Wang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiuhong Cao
- Department of Operation, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - DanDan Zhu
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - CuiQin He
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
25
|
Ling S, Xu T, Sun J, Yan C, Lv B, Wang H, Zhao H, Huang K. Expression of lncRNA MALAT1 through miR-144-3p in Osteoporotic Tibial Fracture Rats and Its Effect on Osteogenic Differentiation of BMSC under Traction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2590055. [PMID: 35836824 PMCID: PMC9276476 DOI: 10.1155/2022/2590055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/28/2022] [Indexed: 12/31/2022]
Abstract
Objective To investigate the expression of lncRNA MALAT1 and miR-144-3p in osteoporotic (OP) tibial fracture rats and analyze their targeting relationship and effects on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) under traction. Methods The OP tibial fracture model was established, and the rats were divided into a sham group and a model group. The tibial tissue of these rats was taken. BMSC of cultured rats with good growth was purchased and grouped according to the presence or absence of transfection of si-MALAT1 and miR-144-3p-mimic. The expression of MALAT1 and miR-144-3p in each group was detected. The bioinformatics website and double luciferase were used to predict the targeting relationship between MALAT1 and miR-144-3p and to detect the expression of genes related to bone differentiation (collagen I, osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP)) of each component, and ALP staining and AR staining were used to detect the formation of BMSC calcium nodules. Results The levels of ALP and TRAP in the model group were higher than that in the sham group (P < 0.05). qRT-PCR results showed that the relative expression level of MALAT1 in the model group was higher than that in the sham group, and the relative expression level of miR-144-3p was lower than that in the sham group (P < 0.05). MALAT1 has a targeting relationship with miR-144-3p. qRT-PCR results showed that the relative expression level of MALAT1 in the tension-MSC group was higher than the MSC group, and the relative expression level of miR-144-3p was lower than the MSC group (P < 0.05). The expressions of collagen I, OCN, OPN, and ALP proteins in the si-MALAT1 group were higher than those of the si-NC group (P < 0.05). The results of ALP staining showed that BMSCs of the si-MALAT1 group had stronger osteogenic differentiation capacity and higher ALP activity than those of the si-NC group. The results of AR staining showed that compared with the si-NC group, the mineralization degree of cells in the si-MALAT1 group was higher, the number of calcium nodules was more, and the cells were more deeply stained. The expressions of collagen I, OCN, OPN, and ALP proteins in the miR-144-3p-mimic group were higher than the mimic-NC group (P < 0.05). ALP staining results showed that BMSCs in the miR-144-3p-mimic group had strong osteogenic differentiation capacity and high ALP activity compared with the mimic-NC group. The results of AR staining showed that, compared with the mimic-NC group, the mineralization degree of cells in the miR-144-3p-mimic group was higher, the number of calcium nodules was more and the cells were more deeply stained. Conclusion In the OP rat model with the tibial fracture, the expression of MALAT1 is upregulated and that of miR-144-3p is downregulated. MALAT1 has a targeting relationship with miR-144-3p, and downregulation of MALAT1 and upregulation of miR-144-3p can promote the osteogenic differentiation of BMSC under traction.
Collapse
Affiliation(s)
- Shiyong Ling
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Tao Xu
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Ningbo, Zhejiang 315040, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chen Yan
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bo Lv
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Hua Wang
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| | - Hong Zhao
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Ningbo, Zhejiang 315040, China
| | - Kai Huang
- Department of Orthopedic Surgery, Zhabei Central Hospital, Jing'an, Shanghai 200070, China
| |
Collapse
|
26
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
27
|
Liu J, Chou Z, Li C, Huang K, Wang X, Li X, Han C, Al-Danakh A, Li X, Song X. ZBTB7A, a miR-144-3p targeted gene, accelerates bladder cancer progression via downregulating HIC1 expression. Cancer Cell Int 2022; 22:179. [PMID: 35501800 PMCID: PMC9063087 DOI: 10.1186/s12935-022-02596-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Zinc finger and BTB domain-containing 7A (ZBTB7A) is a member of the POK family of transcription factors that plays an oncogenic or tumor-suppressive role in different cancers depending on the type and genetic context of cancer. However, the function and molecular mechanism of ZBTB7A in bladder cancer (BC) remain elusive. Methods The role of ZBTB7A in bladder cancer was detected by colony formation, transwell, and tumor formation assays. The expression levels of ZBTB7A, HIC1, and miR-144-3p were analyzed by qRT-PCR and Western blot. Bioinformatics analysis and a dual-luciferase reporter assay were used to assess the effect of ZBTB7A on the promoter activity of HIC1. Results The present study revealed that knockdown of ZBTB7A suppressed BC cell growth and migration, as indicated by an approximately 50% reduction in the number of colonies and an approximately 70% reduction in the number of migrated cells. Loss of ZBTB7A inhibited tumor growth in vivo, resulting in a 75% decrease in tumor volume and an 80% decrease in tumor weight. Further mechanistic studies revealed that ZBTB7A bound to the hypermethylated in cancer 1 (HIC1) promoter and downregulated HIC1 expression, accelerating the malignant behavior of BC. Increased expression of ZBTB7A in BC tissues was negatively corrected with the expression of HIC1. Moreover, ZBTB7A was a target of miR-144-3p, which decreased ZBTB7A expression in BC. Conclusion Our data demonstrate that ZBTB7A, a targeted gene of miR-144-3p, promoted tumorigenesis of BC through downregulating HIC1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02596-w.
Collapse
Affiliation(s)
- Junqiang Liu
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhiyuan Chou
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chun Li
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Kai Huang
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuejian Wang
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiunan Li
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xishuang Song
- Department of Urology of First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|