1
|
Carey KM, Young CD, Clark AJ, Dammer EB, Singh R, Lillard JW. Subtype-specific analysis of gene co-expression networks and immune cell profiling reveals high grade serous ovarian cancer subtype linkage to variable immune microenvironment. J Ovarian Res 2024; 17:240. [PMID: 39627836 PMCID: PMC11613732 DOI: 10.1186/s13048-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is marked by significant molecular diversity, presenting a major clinical challenge due to its aggressive nature and poor prognosis. This study aims to deepen the understanding of HGSOC by characterizing mRNA subtypes and examining their immune microenvironment (TIME) and its role in disease progression. Using transcriptomic data and an advanced computational pipeline, we investigated four mRNA subtypes: immunoreactive, differentiated, proliferative, and mesenchymal, each associated with distinct gene expression profiles and clinical behaviors. We performed differential expression analysis among mRNA subtypes using DESeq2 and conducted Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules related to clinical traits, e.g., age, survival, and subtype classification. Gene Ontology (GO) analysis highlighted key pathways involved in tumor progression and immune evasion. Additionally, we utilized TIMER 2.0 to assess immune cell infiltration across different HGSOC subtypes, providing insights into the interplay between tumor immune microenvironment (TIME). Our findings show that the immunoreactive subtype, particularly the M3 module-associated network, was marked by high immune cell infiltration, including M1 (p < 0.0001) and M2 macrophages (p < 0.01), and Th1 cells (p < 0.01) along with LAIR-1 expression (p = 1.63e-101). The M18 module exhibited strong B cell signatures (p = 6.24e-28), along with significant FCRL5 (adj. p = 3.09e-30) and IRF4 (adj. p = 3.09e-30) coexpression. In contrast, the M5 module was significantly associated with the mesenchymal subtype, along with fibroblasts (p < 0.0001). The proliferative subtype was characterized by M15 module-driven cellular growth and proliferation gene expression signatures, along with significant ovarian stromal cell involvement (p < 0.0001). Our study reveals the complex interplay between mRNA subtypes and suggests genes contributing to molecular subtypes, underscoring the important clinical implications of mRNA subtyping in HGSOC.
Collapse
Affiliation(s)
- Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis J Clark
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
2
|
Liang Y, Li C, Hou X, Lin Y, Cheng J. MicroRNA-875-5p inhibits the growth and metastasis of cervical cancer cells by promoting autophagy and apoptosis and inhibiting the epithelial-mesenchymal transition. Front Oncol 2024; 14:1361721. [PMID: 38800376 PMCID: PMC11116804 DOI: 10.3389/fonc.2024.1361721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction MicroRNA-875-5p (miR-875-5p) is a cancer-related microRNA. It has been demonstrated that miR-875-5p participates in the development of various types of cancer such as hepatocellular carcinoma, gastric carcinoma, prostate and bladder cancer. Previous research suggested that miR-875 is implicated in the development of cervical cancer cells. However, the exact role and function of miR-875-5p in cervical cancer remain unexplored. It is important to examine the role and function of miR-875-5p and the associated signaling pathway, as the findings may have diagnostic and therapeutic significance. Thus, in this study, we investigated the effect of miR-875-5p on the growth and metastasis of cervical cancer cells and the possible underlying mechanisms. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-875-5p in cervical cancer cells and normal cervical epithelium. After overexpression or co-expression of miR-875-5p in cells, the changes in cell function were analyzed. Western blot was used to detect the expression changes of epithelial-mesenchymal transition (EMT) -related proteins and autophagy-related proteins. Results Functional studies demonstrated that miR-875-5p overexpression significantly inhibited the proliferation, migration, invasion, and EMT, and promotes apoptosis and autophagy of cervical cancer cells., while miR-875-5p knockdown promoted the proliferation, migration, invasion, and EMT, and inhibited apoptosis and autophagy cervical cancer cells. Furthermore, Western blot results showed that overexpression of miR-875-5p downregulated the expressions of N-cadherin, Snail, Vimentin and microtubule-associated protein 1 light chain 3B I (LC3B I). Conversely, miR-875-5p upregulated the expression of E-cadherin. Conclusion In conclusion, our findings suggest that miR-875-5p functions as a tumor inhibitor suppressing the growth and metastasis of cervical cancer. Overexpression of miR-875-5p inhibits malignant behavior and promotes autophagy and apoptosis in cervical cancer cells. These findings advance our understanding of the role and function of miR-875-5p in cervical cancer and could facilitate the development of early genetic markers or biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingxiu Liang
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and the Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyang Li
- Department of Biochemistry, School of Basic Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Hou
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and the Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiguang Lin
- School of Pharmaceutical Science, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine (TCM), Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Research & Development Division, Guangzhou Anjie Biomedical Technology Co. Ltd, Guangzhou, China
| | - Jing Cheng
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and the Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Zhang H, Huang Y, Wen Q, Li Y, Guo L, Ge N. INHBA gene silencing inhibits proliferation, migration, and invasion of osteosarcoma cells by repressing TGF-β signaling pathway activation. J Orthop Surg Res 2023; 18:848. [PMID: 37940978 PMCID: PMC10634167 DOI: 10.1186/s13018-023-04330-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a refractory malignancy. This study aimed to explore the roles and mechanisms of Inhibin subunit beta A (INHBA) in OS. METHODS INHBA expression levels in OS tissues and cells were assessed using RT-qPCR and western blotting. The impact of INHBA silencing on OS development was then explored by transfecting the OS cell lines U2OS and MG63 with INHBA-small interfering RNA (siRNA). The influence of INHBA silencing on U2OS and MG63 cell proliferation, migration, and invasion was examined using MTT and Transwell assays. Epithelial-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) were analyzed by RT-qPCR. The expression of genes involved in cell proliferation, migration, invasion, and the TGF-β signaling pathway was evaluated by western blotting and RT-qPCR. RESULTS INHBA levels were elevated in the OS tissues and cells. Furthermore, the transforming growth factor-β (TGF-β) signaling pathway of OS cells was suppressed in response to INHBA-siRNA, whereas proliferation, migration, and invasion of OS cells were inhibited. Besides, INHBA-siRNA significantly inhibited OS cell EMT, evidenced by enhanced E-cadherin mRNA expression and reduced N-cadherin mRNA expression. Further mechanistic studies revealed that the TGF-β1 agonist SRI-011381 hydrochloride increased OS cell proliferation, migration, and invasion after INHBA downregulation. CONCLUSION We found that INHBA silencing could play a vital role in OS via TGF-β1-regulated proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Hongyu Zhang
- Second Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medial University, Qiqihar, 161000, China
| | - Yuemei Huang
- Wuzhou Red Cross Hospital, Wuzhou, 543002, China
| | - Qiuting Wen
- Department of Clinical Pathology, College of Qiqihar Medical University, Qiqihar, 161006, China
| | - Yan Li
- The First Hospital of Qiqihar, Qiqihar, 161005, China
| | - Lin Guo
- Second Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medial University, Qiqihar, 161000, China
| | - Na Ge
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medial University, No. 27 Taishun Street, Qiqihar, 161000, China.
| |
Collapse
|
4
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
5
|
Zhou L, Wang Z, Chen X, Li X, Ge C, Min X, Zhao F, Chen T, Li J. Syntaxin-6 promotes the progression of hepatocellular carcinoma and alters its sensitivity to chemotherapies by activating the USF2/LC3B axis. Int J Biol Sci 2023; 19:3892-3907. [PMID: 37564208 PMCID: PMC10411479 DOI: 10.7150/ijbs.86636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Syntaxin-6 (STX6), a protein of the syntaxin family, is located in the trans-Golgi network and is involved in a variety of intracellular membrane transport events. STX6 is overexpressed in different human malignant tumors. However, little is known about its exact function and molecular mechanism in hepatocellular carcinoma (HCC). In this study, we found that the expression of STX6 was significantly increased in HCC tissues and was associated with poor survival. Gain- and loss-of-function experiments showed that STX6 promotes cell proliferation and metastasis of HCC cells both in vitro and in vivo. Mechanistically, STX6 was negatively regulated by the upstream stimulatory factor 2 (USF2). In addition, STX6 facilitates the association of autophagosomes with lysosomes. Importantly, we demonstrated that STX6 overexpression, despite enhanced resistance to lenvatinib, sensitizes HCC cells to the autophagy activator rapamycin. This study revealed that, under the control of USF2, STX6 accelerates the degradation of microtubule-associated protein 1 light chain 3 beta (LC3) by promoting autophagic flux, ultimately promoting HCC progression. Collectively, we suggest that the USF2-STX6-LC3B axis is a potential therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Lianer Zhou
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zhenyu Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xiaoxia Chen
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xianxian Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Xuejie Min
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong 226200, China
| | - Jinjun Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
6
|
Torso NDG, Quintanilha JCF, Cursino MA, Pincinato EDC, Lima CSP, Moriel P. Data Normalization of Urine miRNA Profiling from Head and Neck Cancer Patients Treated with Cisplatin. Int J Mol Sci 2023; 24:10884. [PMID: 37446060 DOI: 10.3390/ijms241310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The microRNA (miRNA) expression profile by qRT-PCR depends directly on the most appropriate normalization strategy adopted; however, currently there is no universally adequate reference gene. Therefore, this study aimed to determine, considering RNA-Seq results, the most adequate endogenous normalizer for use in the relative quantification of urine miRNAs from head and neck cancer patients, treated with cisplatin chemoradiotherapy. The massive sequencing was performed to identify the miRNAs differentially expressed between the group with cisplatin nephrotoxicity (n = 6) and the one without (n = 6). The candidate endogen normalizer was chosen according to four criteria: (1) the miRNA must be expressed in most samples; (2) the miRNA must have a fold change value between 0.99 and 1.01; (3) the miRNA must have a p-value ≥ 0.98; and (4) the miRNA must not be commented on by the final GeneGlobe (Qiagen, Hilden, Germany) analysis. Four miRNAs met all the criteria (hsa-miR-363-5p, hsa-miR-875-5p, hsa-miR-4302, and hsa-miR-6749-5p) and were selected for validation by qRT-PCR in a cohort of 49 patients (including the 12 sequencing participants). Only hsa-miR-875-5p was shown to be an adequate normalizer for the experimental condition under investigation, as it exhibited invariant expression between the two groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, Brazil
| |
Collapse
|
7
|
Fathi D, Elballal MS, Elesawy AE, Abulsoud AI, Elshafei A, Elsakka EG, Ismail A, El-Mahdy HA, Elrebehy MA, Doghish AS. An emphasis on the interaction of signaling pathways highlights the role of miRNAs in the etiology and treatment resistance of gastric cancer. Life Sci 2023; 322:121667. [PMID: 37023952 DOI: 10.1016/j.lfs.2023.121667] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/β-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.
Collapse
|
8
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
9
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
10
|
Duan P, Cheng J, Mao R, Wang R, Jin Y, Li C. Icariin-Mediated miR-875-5p Inhibits Autophagy and Epithelial-Mesenchymal Transition by Regulation of MDM4 in Cervical Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
MicroRNAs, one type of non-coding RNA, and Icariin have attracted tremendous attention concerning various diseases, especially cancers. Also, the function of Icariin on malignant behaviors by targeting miR-875-5p/MDM4 axis in cervical cancer remains unknown. MiR-875-5p analogs combined
with MDM4 or Icariin were used to explore autophagy and epithelial-mesenchymal transition in cancer cells. Xenograft mice were highlighted to elucidate the influences of Icariin and miR-875-5p in vivo. As a result, miR-875-5p was cut down in cervical cancer cells, which promoted malignant
phenotype, autophagy, and limited apoptosis in cervical cancer cells. Contrarily,miR-875-5p overexpression had a contrary performance in cervical cancer cells. miR-875-5p was validated as a sponge of MDM4. Enhanced expression of MDM4 weakened the performance of miR-875-5p mimic on autophagy
and epithelial-mesenchymal transition. Moreover, Icariin reversed the stimulative action of the inhibitor on autophagy and xenograft tumor growth. Generally, These findings imply that Icariin could be identified as a curative avenue for cervical cancer via miR-875-5p/MDM4 axis.
Collapse
|
11
|
MicroRNA as a Biomarker in Gastroenterological Cancers. Int J Mol Sci 2022; 23:ijms23094701. [PMID: 35563092 PMCID: PMC9102467 DOI: 10.3390/ijms23094701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
|