1
|
Tran TT, Yun G, Kim S. Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practice. BMC Nephrol 2024; 25:353. [PMID: 39415082 PMCID: PMC11484428 DOI: 10.1186/s12882-024-03793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Acute kidney injury (AKI) presents a significant clinical challenge due to its rapid progression to kidney failure, resulting in serious complications such as electrolyte imbalances, fluid overload, and the potential need for renal replacement therapy. Early detection and prediction of AKI can improve patient outcomes through timely interventions. This review was conducted as a narrative literature review, aiming to explore state-of-the-art models for early detection and prediction of AKI. We conducted a comprehensive review of findings from various studies, highlighting their strengths, limitations, and practical considerations for implementation in healthcare settings. We highlight the potential benefits and challenges of their integration into routine clinical care and emphasize the importance of establishing robust early-detection systems before the introduction of artificial intelligence (AI)-assisted prediction models. Advances in AI for AKI detection and prediction are examined, addressing their clinical applicability, challenges, and opportunities for routine implementation.
Collapse
Affiliation(s)
- Tu T Tran
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
- Department of Nephro-Urology and Dialysis, Thai Nguyen National Hospital, Thai Nguyen, Vietnam
| | - Giae Yun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
2
|
Klimm W, Szamotulska K, Karwański M, Bartoszewicz Z, Witkowski W, Rozmyslowicz T, Niemczyk S. Tissue Inhibitors of Metalloproteinase 1 (TIMP-1) and 3 (TIMP-3) as New Markers of Acute Kidney Injury After Massive Burns. Med Sci Monit 2024; 30:e943500. [PMID: 38706186 PMCID: PMC11084814 DOI: 10.12659/msm.943500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication after massive burn injury. One of the postulated etiologies is destruction of the extracellular matrix of nephrons, caused by a local imbalance between matrix metalloproteinases (MMPs) and specific inhibitors. The aim of this study was to analyze the dynamics of tissue inhibitors of metalloproteinases (TIMPs) during the first 5 days after massive thermal injury and the relationship with the risk of AKI. MATERIAL AND METHODS Thirty-three adults (22 men, 11 women) with severe burns were enrolled in the study. The values of TIMPs 1 to 4 were measured in blood serum and urine using the multiplex Luminex system. The associations between TIMPs and the risk of AKI were analyzed by using the generalized linear mixed models for repeated measurements. RESULTS Significant changes in serum and urine activities of TIMPs were confirmed, especially during the first 2 days after burn injury. Almost half of patients presented renal problems during the study. Significant differences between values of TIMPs in AKI and non-AKI status were also observed. However, a significant relationship between concentration of TIMPs and risk of AKI was confirmed only for urine TIMP-1 and serum TIMP-3. CONCLUSIONS The evaluation of TIMPs in the early stage after burn injury has potential benefits. The important roles of urine TIMP-1 and serum TIMP-3, as novel markers of the risk of AKI development, were confirmed. Other parameters require further analysis.
Collapse
Affiliation(s)
- Wojciech Klimm
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, Warsaw, Poland
| | - Marek Karwański
- Department of Applied Mathematics, University of Life Sciences, SGGW, Warsaw, Poland
| | - Zbigniew Bartoszewicz
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Witkowski
- Department of Burns, Plastic and Reconstructive Surgery, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Qu X, Guo C, Liu S, Li X, Xi L, Liu X, Zhang J. Pharmacokinetics and Nephrotoxicity of Polymyxin MRX-8 in Rats: A Novel Agent against Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:354. [PMID: 38667030 PMCID: PMC11047535 DOI: 10.3390/antibiotics13040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
MRX-8 is a novel polymyxin for carbapenem-resistant Gram-negative infections that has been recently evaluated in Phase I clinical trials. Herein, its pharmacokinetics (PK) and nephrotoxicity in rats are reported for the first time. This study aimed at pre-clinical PK and safety assessments. An LC-MS/MS method was developed to determine concentrations of MRX-8 and its major deacylation metabolite, MRX-8039, in rat plasma. Animals were administered a single dose of MRX-8 (2, 4, 6, and 8 mg/kg) or comparator polymyxin B (PMB) (4 and 8 mg/kg) to compare the kidney injury known for the polymyxin drug class. Nephrotoxicity was evaluated using serum creatinine, blood urea nitrogen (BUN) biomarkers, and renal histopathology. In rats, MRX-8 displayed linear PK within the range of 2-8 mg/kg, with approximately 4% of MRX-8 converted to MRX-8039. MRX-8 induced only mild increases in serum creatinine and BUN levels, with an apparent decrease in nephrotoxicity within 24 h, in contrast to PMB, which exhibited a significant and more persistent toxicity. Additional nephrotoxicity biomarkers (plasma NGAL and urinary NGAL, KIM-1, and TIMP-1) have confirmed attenuated MRX-8 kidney injury. Histopathology has revealed significantly greater cellular/tissue toxicity for PMB as compared to MRX-8 (variances of p = 0.008 and p = 0.048 vs. saline control, respectively). Thus, MRX-8 induces a mild and reversible kidney injury in rats compared to PMB. These data support a continued evaluation of the novel polymyxin in human trials.
Collapse
Affiliation(s)
- Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenxue Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaojun Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200052, China;
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Xi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Clinical Pharmacology Center, Huashan Hospital, Fudan University, Shanghai 200437, China
| |
Collapse
|
4
|
Qi P, Huang MJ, Wu W, Ren XW, Zhai YZ, Qiu C, Zhu HY. Exploration of potential biomarkers and therapeutic targets for trauma-related acute kidney injury. Chin J Traumatol 2024; 27:97-106. [PMID: 38296680 DOI: 10.1016/j.cjtee.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Acute kidney injury (AKI) is one of the most common functional injuries observed in trauma patients. However, certain trauma medications may exacerbate renal injury. Therefore, the early detection of trauma-related AKI holds paramount importance in improving trauma prognosis. METHODS Qualified datasets were selected from public databases, and common differentially expressed genes related to trauma-induced AKI and hub genes were identified through enrichment analysis and the establishment of protein-protein interaction (PPI) networks. Additionally, the specificity of these hub genes was investigated using the sepsis dataset and conducted a comprehensive literature review to assess their plausibility. The raw data from both datasets were downloaded using R software (version 4.2.1) and processed with the "affy" package19 for correction and normalization. RESULTS Our analysis revealed 585 upregulated and 629 downregulated differentially expressed genes in the AKI dataset, along with 586 upregulated and 948 downregulated differentially expressed genes in the trauma dataset. Concurrently, the establishment of the PPI network and subsequent topological analysis highlighted key hub genes, including CD44, CD163, TIMP metallopeptidase inhibitor 1, cytochrome b-245 beta chain, versican, membrane spanning 4-domains A4A, mitogen-activated protein kinase 14, and early growth response 1. Notably, their receiver operating characteristic curves displayed areas exceeding 75%, indicating good diagnostic performance. Moreover, our findings postulated a unique molecular mechanism underlying trauma-related AKI. CONCLUSION This study presents an alternative strategy for the early diagnosis and treatment of trauma-related AKI, based on the identification of potential biomarkers and therapeutic targets. Additionally, this study provides theoretical references for elucidating the mechanisms of trauma-related AKI.
Collapse
Affiliation(s)
- Peng Qi
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng-Jie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Wu
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue-Wen Ren
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yong-Zhi Zhai
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chen Qiu
- Department of Orthopedics, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hai-Yan Zhu
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Storjord E, Wahlin S, Karlsen BO, Hardersen RI, Dickey AK, Ludviksen JK, Brekke OL. Potential Biomarkers for the Earlier Diagnosis of Kidney and Liver Damage in Acute Intermittent Porphyria. Life (Basel) 2023; 14:19. [PMID: 38276268 PMCID: PMC11154556 DOI: 10.3390/life14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Acute intermittent porphyria (AIP) is an inherited metabolic disorder associated with complications including kidney failure and hepatocellular carcinoma, probably caused by elevations in the porphyrin precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA). This study explored differences in modern biomarkers for renal and hepatic damage between AIP patients and controls. Urine PBG testing, kidney injury panels, and liver injury panels, including both routine and modern biomarkers, were performed on plasma and urine samples from AIP cases and matched controls (50 and 48 matched pairs, respectively). Regarding the participants' plasma, the AIP cases had elevated kidney injury marker-1 (KIM-1, p = 0.0002), fatty acid-binding protein-1 (FABP-1, p = 0.04), and α-glutathione S-transferase (α-GST, p = 0.001) compared to the matched controls. The AIP cases with high PBG had increased FABP-1 levels in their plasma and urine compared to those with low PBG. In the AIP cases, KIM-1 correlated positively with PBG, CXCL10, CCL2, and TCC, and the liver marker α-GST correlated positively with IL-13, CCL2, and CCL4 (all p < 0.05). In conclusion, KIM-1, FABP-1, and α-GST could represent potential early indicators of renal and hepatic damage in AIP, demonstrating associations with porphyrin precursors and inflammatory markers.
Collapse
Affiliation(s)
- Elin Storjord
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
| | - Staffan Wahlin
- Hepatology Division, Department of Upper GI Diseases, Porphyria Centre Sweden, Karolinska Institute and Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Bård Ove Karlsen
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Research Laboratory, Nordland Hospital Trust, 8092 Bodø, Norway;
| | - Randolf I. Hardersen
- Department of Nephrology, Nordland Hospital Trust, 8092 Bodø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Amy K. Dickey
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ole-Lars Brekke
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
6
|
Van Nynatten LR, Miller MR, Patel MA, Daley M, Filler G, Badrnya S, Miholits M, Webb B, McIntyre CW, Fraser DD. A novel multiplex biomarker panel for profiling human acute and chronic kidney disease. Sci Rep 2023; 13:21210. [PMID: 38040779 PMCID: PMC10692319 DOI: 10.1038/s41598-023-47418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Acute and chronic kidney disease continues to confer significant morbidity and mortality in the clinical setting. Despite high prevalence of these conditions, few validated biomarkers exist to predict kidney dysfunction. In this study, we utilized a novel kidney multiplex panel to measure 21 proteins in plasma and urine to characterize the spectrum of biomarker profiles in kidney disease. Blood and urine samples were obtained from age-/sex-matched healthy control subjects (HC), critically-ill COVID-19 patients with acute kidney injury (AKI), and patients with chronic or end-stage kidney disease (CKD/ESKD). Biomarkers were measured with a kidney multiplex panel, and results analyzed with conventional statistics and machine learning. Correlations were examined between biomarkers and patient clinical and laboratory variables. Median AKI subject age was 65.5 (IQR 58.5-73.0) and median CKD/ESKD age was 65.0 (IQR 50.0-71.5). Of the CKD/ESKD patients, 76.1% were on hemodialysis, 14.3% of patients had kidney transplant, and 9.5% had CKD without kidney replacement therapy. In plasma, 19 proteins were significantly different in titer between the HC versus AKI versus CKD/ESKD groups, while NAG and RBP4 were unchanged. TIMP-1 (PPV 1.0, NPV 1.0), best distinguished AKI from HC, and TFF3 (PPV 0.99, NPV 0.89) best distinguished CKD/ESKD from HC. In urine, 18 proteins were significantly different between groups except Calbindin, Osteopontin and TIMP-1. Osteoactivin (PPV 0.95, NPV 0.95) best distinguished AKI from HC, and β2-microglobulin (PPV 0.96, NPV 0.78) best distinguished CKD/ESKD from HC. A variety of correlations were noted between patient variables and either plasma or urine biomarkers. Using a novel kidney multiplex biomarker panel, together with conventional statistics and machine learning, we identified unique biomarker profiles in the plasma and urine of patients with AKI and CKD/ESKD. We demonstrated correlations between biomarker profiles and patient clinical variables. Our exploratory study provides biomarker data for future hypothesis driven research on kidney disease.
Collapse
Affiliation(s)
| | | | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Guido Filler
- Medicine, Western University, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | | | | | - Brian Webb
- Thermo Fisher Scientific, Rockford, IL, USA
| | - Christopher W McIntyre
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
7
|
Cut loose TIMP-1: an emerging cytokine in inflammation. Trends Cell Biol 2022; 33:413-426. [PMID: 36163148 DOI: 10.1016/j.tcb.2022.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Appreciation of the entire biological impact of an individual protein can be hampered by its original naming based on one function only. Tissue inhibitor of metalloproteinases-1 (TIMP-1), mostly known for its eponymous function to inhibit metalloproteinases, exhibits only a fraction of its cellular effects via this feature. Recently, TIMP-1 emerged as a potent cytokine acting via various cell-surface receptors, explaining a so-far under-appreciated role of TIMP-1-mediated signaling on immune cells. This, at least partly, resolved why elevated blood levels of TIMP-1 correlate with progression of numerous inflammatory diseases. Here, we emphasize the necessity of unbiased name-independent recognition of structure-function relationships to properly appreciate the biological potential of TIMP-1 and other cytokines in complex physiological processes such as inflammation.
Collapse
|