1
|
Yu C, Liu C, Kuang W, Li J, Qiu S, Huang H, Li D, Xia B, Duan Y, Zhu L. The BATF2-ATF3 axis exacerbates intervertebral disc degeneration via inducing mitochondrial dysfunction. Int Immunopharmacol 2025; 156:114661. [PMID: 40267724 DOI: 10.1016/j.intimp.2025.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, spinal instability, disc herniation and spinal stenosis, which is a serious risk to human health, yet its molecular mechanisms remain unknown. The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been reported to play important roles in regulating cell proliferation, apoptosis, and inflammatory responses; however, its specific role in IVDD remains unknown. We firstly demonstrated BATF2 expression was significantly upregulated in degenerated nucleus pulposus (NP) tissues. Functional assays demonstrated that BATF2 overexpression promoted nucleus pulposus cell (NPC) apoptosis and extracellular matrix (ECM) catabolism in vitro and vivo. It is further demonstrated that BATF2 impairs mitochondrial function by disturbing mitochondrial redox homeostasis. Mechanistically, BATF2 stabilizes the activating transcription factor 3 (ATF3) by inhibiting the ubiquitination modification of ATF3. Notably, ATF3 overexpression accelerated NPC apoptosis and ECM degradation. More importantly, ATF3 knockdown reversed the effects of BATF2-induced mitochondrial dysfunction and IVDD progression. These results suggest that BATF2-ATF3 axis disrupts mitochondrial redox homeostasis to impair mitochondrial function, thereby exacerbating the progression of IVDD. Targeting BATF2-ATF3 axis could provide a potential strategy for IVDD treatment.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Sujun Qiu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoran Huang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dailong Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bin Xia
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Orthopaedics, Chengdu Seventh People's Hospital, Chengdu 610000, China
| | - Yang Duan
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
2
|
Zhao Y, Xiang Q, Tian S, Wu Z, Lin J, Wang L, Sun Z, Li W. Noncoding RNA as a crucial epigenetic modulator in the degeneration of the ligamentum flavum. Exp Mol Med 2024; 56:2551-2558. [PMID: 39617784 DOI: 10.1038/s12276-024-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024] Open
Abstract
Ligamentum flavum degeneration, including hypertrophy and ossification of the ligamentum flavum, leads to degenerative spinal stenosis in older adults. However, the underlying mechanisms of ligamentum flavum degeneration remain unclear, and therapeutic strategies are limited. Noncoding RNAs include microRNAs, circular RNAs, and long noncoding RNAs. As important epigenetic modifications, noncoding RNAs are involved in the progression of several age-related diseases, including ligamentum flavum degeneration. Previous studies have shown that noncoding RNAs can regulate the osteogenic differentiation and fibrosis of ligamentum flavum cells by regulating the expression of related genes. In this review, we discuss noncoding RNAs and their role in ligamentum flavum degeneration.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Silwal P, Nguyen-Thai AM, Alexander PG, Sowa GA, Vo NV, Lee JY. Cellular and Molecular Mechanisms of Hypertrophy of Ligamentum Flavum. Biomolecules 2024; 14:1277. [PMID: 39456209 PMCID: PMC11506588 DOI: 10.3390/biom14101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined. The molecular factors involved in the onset of HLF include increases in inflammatory cytokines such as transforming growth factor (TGF)-β, matrix metalloproteinases, and pro-fibrotic growth factors. In this review, we discuss the current understanding of the mechanisms involved in HLF with a particular emphasis on aging and mechanical stress. We also discuss in detail how several pathomechanisms such as fibrosis, proliferation and apoptosis, macrophage infiltration, and autophagy, in addition to several molecular pathways involving TGF-β1, mitogen-activated protein kinase (MAPKs), and nuclear factor-κB (NF-κB) signaling, PI3K/AKT signaling, Wnt signaling, micro-RNAs, extracellular matrix proteins, reactive oxygen species (ROS), etc. are involved in fibrosis leading to HLF. We also present a summary of the current advancements in preclinical animal models for HLF research. In addition, we update the current and potential therapeutic targets/agents against HLF. An improved understanding of the molecular processes behind HLF and a novel animal model are key to developing effective LSS prevention and treatment strategies.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Peter G. Alexander
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Cancer, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
4
|
Chen J, Shen L, Wu T, Yang Y. Unraveling the significance of AGPAT4 for the pathogenesis of endometriosis via a multi-omics approach. Hum Genet 2024; 143:1163-1174. [PMID: 38850428 PMCID: PMC11485110 DOI: 10.1007/s00439-024-02681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Endometriosis is characterized by the ectopic proliferation of endometrial cells, posing considerable diagnostic and therapeutic challenges. Our study investigates AGPAT4's involvement in endometriosis pathogenesis, aiming to unveil new therapeutic targets. Our investigation by analyzing eQTL data from GWAS for preliminary screening. Subsequently, within the GEO dataset, we utilized four machine learning algorithms to precisely identify risk-associated genes. Gene validity was confirmed through five Mendelian Randomization methods. AGPAT4 expression was measured by Single-Cell Analysis, ELISA and immunohistochemistry. We investigated AGPAT4's effect on endometrial stromal cells using RNA interference, assessing cell proliferation, invasion, and migration with CCK8, wound-healing, and transwell assays. Protein expression was analyzed by western blot, and AGPAT4 interactions were explored using AutoDock. Our investigation identified 11 genes associated with endometriosis risk, with AGPAT4 and COMT emerging as pivotal biomarkers through machine learning analysis. AGPAT4 exhibited significant upregulation in both ectopic tissues and serum samples from patients with endometriosis. Reduced expression of AGPAT4 was observed to detrimentally impact the proliferation, invasion, and migration capabilities of endometrial stromal cells, concomitant with diminished expression of key signaling molecules such as Wnt3a, β-Catenin, MMP-9, and SNAI2. Molecular docking analyses further underscored a substantive interaction between AGPAT4 and Wnt3a.Our study highlights AGPAT4's key role in endometriosis, influencing endometrial stromal cell behavior, and identifies AGPAT4 pathways as promising therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Licong Shen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Chen JH, Ye L, Zhu SL, Yang Y, Xu N. DNMT1-Mediated the Downregulation of FOXF1 Promotes High Glucose-induced Podocyte Damage by Regulating the miR-342-3p/E2F1 Axis. Cell Biochem Biophys 2024; 82:2957-2975. [PMID: 39014186 DOI: 10.1007/s12013-024-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.
Collapse
Affiliation(s)
- Jie-Hui Chen
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China.
| | - Ling Ye
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Sheng-Lang Zhu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Yun Yang
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Ning Xu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| |
Collapse
|
6
|
Zhang G, Deng L, Jiang Z, Xiang G, Zeng Z, Zhang H, Wang Y. Titanium nanoparticles released from orthopedic implants induce muscle fibrosis via activation of SNAI2. J Nanobiotechnology 2024; 22:522. [PMID: 39215337 PMCID: PMC11363368 DOI: 10.1186/s12951-024-02762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Titanium alloys represent the prevailing material employed in orthopedic implants, which are present in millions of patients worldwide. The prolonged presence of these implants in the human body has raised concerns about possible health effects. This study presents a comprehensive analysis of titanium implants and surrounding tissue samples obtained from patients who underwent revision surgery for therapeutic reasons. The surface of the implants exhibited nano-scale corrosion defects, and nanoparticles were deposited in adjacent samples. In addition, muscle in close proximity to the implant showed clear evidence of fibrotic proliferation, with titanium content in the muscle tissue increasing the closer it was to the implant. Transcriptomics analysis revealed SNAI2 upregulation and activation of PI3K/AKT signaling. In vivo rodent and zebrafish models validated that titanium implant or nanoparticles exposure provoked collagen deposition and disorganized muscle structure. Snai2 knockdown significantly reduced implant-associated fibrosis in both rodent and zebrafish models. Cellular experiments demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced fibrotic gene expression at sub-cytotoxic doses, whereas Snai2 knockdown significantly reduced TiO2 NPs-induced fibrotic gene expression. The in vivo and in vitro experiments collectively demonstrated that Snai2 plays a pivotal role in mediating titanium-induced fibrosis. Overall, these findings indicate a significant release of titanium nanoparticles from the implants into the surrounding tissues, resulting in muscular fibrosis, partially through Snai2-dependent signaling.
Collapse
Affiliation(s)
- Gengming Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuotong Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Hunan University, Ministry of Education, Changsha, 410082, PR China
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Chen J, Zhong G, Qiu M, Ke W, Xue J, Chen J. Exploring lncRNA Expression Patterns in Patients With Hypertrophied Ligamentum Flavum. Neurospine 2024; 21:330-341. [PMID: 38291747 PMCID: PMC10992663 DOI: 10.14245/ns.2346994.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood. METHODS Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro. RESULTS In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro. CONCLUSION This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.
Collapse
Affiliation(s)
- Junling Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guibin Zhong
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Manle Qiu
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wei Ke
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Xue
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Shin HK, Seo KJ, Lee JY, Jeon SR, Yune TY. GSK-3β and β-Catenin Signaling Pathway is Involved in Myofibroblast Transition of Ligamentum Flavum in Lumbar Spinal Stenosis Patients. Spine (Phila Pa 1976) 2023; 48:1472-1479. [PMID: 37417723 DOI: 10.1097/brs.0000000000004770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
STUDY DESIGN Histologic analysis of the ligamentum flavum (LF) in the lumbar spine. OBJECTIVE The objective of this study is to investigate the levels of glycogen synthase kinase-3β (GSK-3β) and β-catenin in the LF tissue of patients with lumbar spinal stenosis (LSS). SUMMARY OF BACKGROUND DATA The hypertrophy of the LF is the primary cause of the progression of LSS. Recently, Wnt signaling has been proposed as one of the molecular processes contributing to LF hypertrophy. GSK-3β and β-catenin are recognized to play a crucial part in the control of this signaling pathway. MATERIALS AND METHODS From May 2020 to July 2022, LF from 51 LSS patients (LSS group) and 18 lumbar disc herniation patients (control group) were prospectively collected during surgery. Histologic analysis was investigated to confirm the progression of LF fibrosis. The levels of α-smooth muscle actin, phosphorylation of GSK-3β (p-GSK-3β; inactive form), and β-catenin were analyzed in LF with Western blot analysis to reveal the GSK-3β/β-catenin signaling pathway. Continuous variables are expressed as mean±SD and compared using the student t test. Categorical variables are compared using the χ 2 test or Fisher exact test, as appropriate. To determine the association between p-GSK-3β and LF thickness, the Pearson correlation coefficient was calculated based on the results of Western blot analysis. RESULTS The LSS group was older and had thicker LF than the controls. The LSS group showed increased collagen fiber and cellularity than the controls. The levels of α-smooth muscle actin, p-GSK-3β, and β-catenin in the LF of the LSS group were significantly higher than that of the control group. There was a strong positive correlation between p-GSK-3β (Ser9) level and LF thickness in LSS patients ( r =0.69, P =0.01). CONCLUSION This research proposes a molecular mechanism for the pathogenesis of LF hypertrophy in LSS. Specifically, GSK-3β/β-catenin signaling appears to be related to LF hypertrophy in LSS and a positive correlation exists between p-GSK-3β level and LF thickness. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Hong Kyung Shin
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Jin Seo
- Department Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Young Yune
- Department Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. LncRNA XIST facilitates hypertrophy of ligamentum flavum by activating VEGFA-mediated autophagy through sponging miR-302b-3p. Biol Direct 2023; 18:25. [PMID: 37226251 DOI: 10.1186/s13062-023-00383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Increasing evidences have shown that long non-coding RNAs (lncRNAs) display crucial regulatory roles in the occurrence and development of numerous diseases. However, the function and underlying mechanisms of lncRNAs in hypertrophy of ligamentum flavum (HLF) have not been report. METHODS The integrated analysis of lncRNAs sequencing, bioinformatics analysis and real-time quantitative PCR were used to identify the key lncRNAs involved in HLF progression. Gain- and loss-function experiments were used to explore the functions of lncRNA X inactive specific transcript (XIST) in HLF. Mechanistically, bioinformatics binding site analysis, RNA pull-down, dual-luciferase reporter assay, and rescue experiments were utilized to investigate the mechanism by which XIST acts as a molecular sponge of miR-302b-3p to regulate VEGFA-mediated autophagy. RESULTS We identified that XIST was outstandingly upregulated in HLF tissues and cells. Moreover, the up-regulation of XIST strongly correlated with the thinness and fibrosis degree of LF in LSCS patients. Functionally, knockdown of XIST drastically inhibited proliferation, anti-apoptosis, fibrosis and autophagy of HLF cells in vitro and suppressed hypertrophy and fibrosis of LF tissues in vivo. Intestinally, we uncovered that overexpression of XIST significantly promoted proliferation, anti-apoptosis and fibrosis ability of HLF cells by activating autophagy. Mechanistic studies illustrated that XIST directly medullated the VEGFA-mediated autophagy through sponging miR-302b-3p, thereby enhancing the development and progression of HLF. CONCLUSION Our findings highlighted that the XIST/miR-302b-3p/VEGFA-mediated autophagy axis is involved in development and progression of HLF. At the same time, this study will complement the blank of lncRNA expression profiles in HLF, which laid the foundation for further exploration of the relationship between lncRNAs and HLF in the future.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|