1
|
Yousef EH, El Gayar AM, El-Magd NFA. Insights into Sorafenib resistance in hepatocellular carcinoma: Mechanisms and therapeutic aspects. Crit Rev Oncol Hematol 2025; 212:104765. [PMID: 40389183 DOI: 10.1016/j.critrevonc.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
The most prevalent primary hepatic cancer, hepatocellular carcinoma (HCC), has a bad prognosis. HCC prevalence and related deaths have increased in recent decades. Food and Drug Administration (FDA) has licensed Sorafenib as a first-line treatment for individuals with advanced HCC. Despite this, some clinical studies indicate that a significant percentage of liver cancer patients exhibit insensitivity to sorafenib. Furthermore, the overall effectiveness of sorafenib is far from adequate, and the number of patients who benefit from therapy is low. In recent years, many researchers have focused on the mechanisms underlying sorafenib resistance. Acquired resistance to sorafenib in HCC cells has been reported to be facilitated by dysregulation of signal transducer and activator of transcription 3 (STAT3) activation, angiogenesis, autophagy, hypoxia-induced pathways, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), ferroptosis, and non-coding RNAs (ncRNAs). Recent clinical trials, including comparisons of sorafenib with immune checkpoint inhibitors like tislelizumab, have shown promise in improving patient outcomes. Additionally, combination therapies targeting complementary pathways are under investigation to overcome resistance and enhance treatment efficacy. The limitation of Sorafenib's effectiveness has been partially but not completely clarified. Furthermore, while certain regimens have demonstrated positive results, more clinical trials are required to confirm them. Future research should focus on identifying predictive biomarkers for therapy response, targeting the tumor microenvironment, and exploring novel therapeutic agents and personalized medicine strategies. A deeper understanding of these mechanisms will be essential for developing more effective therapeutic approaches and improving the prognosis of patients with advanced HCC. This article discusses strategies that may be employed to enhance the success of treatment and summarizes new research on the possible pathways that lead to sorafenib resistance.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34511, Egypt.
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Wang Q, Wang X, Ye H, Yao Y, Li H, Qin X, Zhao Y, Jiang W, Xu M, Zi T, Li X, Chen X, Zhou J, Wu G. VAV2 exists in extrachromosomal circular DNA and contributes Enzalutamide resistance of prostate cancer via stabilization of AR/ARv7. Int J Biol Sci 2025; 21:2843-2863. [PMID: 40303312 PMCID: PMC12035891 DOI: 10.7150/ijbs.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are circular, double-stranded DNA molecules ubiquitously present across various organisms, playing a critical role in tumorigenesis and tumor progression. However, their precise contribution to prostate cancer (PCa) remains incompletely understood. To elucidate the function of eccDNAs in PCa, eccDNA sequencing and annotation were performed in PCa tissues and cell lines using Circle-seq. Amplified genes on eccDNAs were identified by cross-referencing annotated eccDNA-associated genes with those overexpressed in PCa based on TCGA data. Furthermore, eccDNA profiles were compared between Enzalutamide-sensitive and -resistant cell lines to investigate their role in resistance mechanisms. Notably, VAV2 was detected on both linear and circular DNA, as confirmed by PCR and Sanger sequencing. Functional analyses demonstrated that VAV2 overexpression promotes PCa proliferation and metastasis by activating the PAK1/AKT signaling pathway through PAK1 phosphorylation. Additionally, VAV2 contributes to Enzalutamide resistance by enhancing AR/ARv7 protein stability via reduced ubiquitination, mediated through the recruitment of the deubiquitinating enzyme USP48. These findings establish VAV2, identified through eccDNA sequencing, as a potential oncogene and a promising biomarker for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hanchu Ye
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yicong Yao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xin Qin
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yan Zhao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Wei Jiang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Mingming Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Tong Zi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xilei Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Juan Zhou
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
3
|
Tan Z, Liu J, Hou M, Zhou J, Chen Y, Chen X, Leng Y. Isorhamnetin inhibits cholangiocarcinoma proliferation and metastasis via PI3K/AKT signaling pathway. Discov Oncol 2025; 16:469. [PMID: 40186843 PMCID: PMC11972266 DOI: 10.1007/s12672-025-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), which is a malignant tumor originating from the epithelial cells of the bile ducts, has witnessed an increasing incidence year by year. Owing to the dearth of effective treatments, the prognosis for CCA is rather poor. Isorhamnetin is known to possess anti-tumor, anti-inflammatory and oxidative stress modulating effects; however, its role in CCA remains unclear. METHODS Firstly, we screened the core targets and pathways of isorhamnetin for the treatment of CCA through a network pharmacology approach. Subsequently, we verified via molecular docking that the core targets could dock stably with isorhamnetin. Finally, we verified the inhibitory effect of isorhamnetin on the malignant biological behavior of CCA in vitro and in vivo experiments. RESULTS Based on the network pharmacology analysis, we came to the conclusion that AKT1 might be a core target of isorhamnetin in the treatment of CCA. Molecular docking indicated that AKT1 was capable of binding stably to isorhamnetin. Subsequently, In vitro experiments demonstrated that isorhamnetin was able to suppress the proliferation and metastasis of CCA cells, and AKT1 played a pivotal role in this process. Mechanistically speaking, isorhamnetin exerts its inhibitory effect on tumor growth via the PI3K/AKT signaling pathway. CONCLUSIONS Our study demonstrated for the first time that isorhamnetin can inhibit the progression of CCA through PI3K/AKT, and that AKT1 may be a target of isorhamnetin for the treatment of CCA.
Collapse
Affiliation(s)
- Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
4
|
陶 露, 韦 卓, 王 月, 项 平. [CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:566-576. [PMID: 40159971 PMCID: PMC11955888 DOI: 10.12122/j.issn.1673-4254.2025.03.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To investigate CEACAM6 expression in nasopharyngeal carcinoma (NPC) and its regulatory effects on tumor cell proliferation, migration, and epithelial-mesenchymal transition (EMT). METHODS CEACAM6 expression in NPC was analyzed using GEO datasets and validated by immunohistochemistry in NPC tissues and by Western blotting and RT-qPCR in NPC cell lines (HNE1, C666-1, HK1, 5-8F and CNE2Z) and normal nasopharyngeal epithelial NP69 cells. In the NPC cell lines, the effects of lentivirus-mediated CEACAM6 overexpression and knockdown on cell proliferation, migration, invasion and cytoskeletal structures were evaluated using CCK-8 assay, Edu staining, wound healing assay, Transwell assay, and phalloidin staining. Western blotting was performed to determine the expressions of EMT-related proteins (FN1, ITGA5, ITGB1, E-cadherin, N-cadherin and vimentin) in the NPC cells and the effect of FN1 overexpression on ITGA5 and ITGB1 protein expressions. RESULTS Analysis of the data from the GEO datasets suggested that CEACAM6 was significantly downregulated in NPC, which was associated with poor patient prognosis. Immunohistochemistry also showed low expressions of CEACAM6 in clinical NPC tissues (P<0.05). In NPC cells, CEACAM6 overexpression significantly suppressed cell proliferation, migration and invasion and reduced the fluorescence intensity of actin. CEACAM6 overexpression also resulted in significant downregulation of FN1, ITGA5, ITGB1, N-cadherin and vimentin expressions and upregulation of E-cadherin expression, and FN1 overexpression obviously attenuated the inhibitory effect of CEACAM6 overexpression on ITGA5 and ITGB1 expressions. CONCLUSIONS CEACAM6 inhibits NPC cell migration and invasion by inhibiting EMT via regulating FN1, ITGA5 and ITGB1 expressions.
Collapse
|
5
|
Wang Y, Xu J, Zhang H, Guo X, Liu H, Sun Q. MAZ-mediated LAMA5 transcription activation promotes gastric cancer progression through the STAT3 signaling. Funct Integr Genomics 2025; 25:59. [PMID: 40072648 PMCID: PMC11903569 DOI: 10.1007/s10142-025-01574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Laminin subunit alpha-5 (LAMA5) has been identified as an oncogene in many cancers, while its role and mechanism in gastric cancer (GC) remain to be explored. Here, the influences of LAMA5 knockdown on GC were investigated in vitro and in vivo. LAMA5 expression was silenced in GC cells alone or in combination with the signal transducer and activator of transcription 3 (STAT3) activator Colivelin, followed by CCK-8, colony formation, EdU, flow cytometry, wound healing assay, and Transwell assay. The regulatory relationship between Myc-associated zinc finger protein (MAZ) and LAMA5 was characterized by ChIP and luciferase reporter analysis. The effect of knockdown of MAZ alone or in combination with LAMA5 overexpression on GC was investigated in vitro and in vivo. LAMA5 was highly expressed in GC cells, and knockdown of LAMA5 inhibited GC cell malignant aggressiveness, which was reversed by the Colivelin treatment. The transcription factor MAZ bound to the promoter of LAMA5 to activate its transcription, and the anti-tumor effects of sh-MAZ on GC cells in vitro and in vivo were overturned by LAMA5 overexpression. In conclusion, MAZ promotes GC cell proliferation and migration by the LAMA5/STAT3 axis, implying that this axis can function as a target for GC therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China
| | - Jiazhong Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China
| | - Hongxia Zhang
- Department of Laser Cosmetic Clinic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P.R. China
| | - Xiaobo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China
| | - Hongjun Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China
| | - Qinhui Sun
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
6
|
Li X, Zhou Z, Zhou C, Xiong M, Xing C, Wu Y. Preoperative Albumin to Alkaline Phosphatase Ratio and Inflammatory Burden Index for Rectal Cancer Prognostic Nomogram-Construction: Based on Multiple Machine Learning. J Inflamm Res 2024; 17:11161-11174. [PMID: 39713712 PMCID: PMC11662910 DOI: 10.2147/jir.s500900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose Preoperative albumin to alkaline phosphatase ratio (AAPR) and inflammatory burden index (IBI) are prognostic indicators for a multitude of cancers, and our study focuses on evaluating the prognostic significance of the AAPR and the IBI on rectal cancer (RC) patients to provide a more accurate guideline for patient prognosis. Patients and Methods This study enrolled patients who underwent laparoscopic rectal cancer surgery from January 2016 to January 2021. We utilized three machine learning approaches to select variables most relevant to prognosis in the training cohort. Finally, based on the screened variables, a nomogram was established to predict RC patients' overall survival (OS). The improvement in predictive ability and clinical benefit was assessed through the concordance index (C-index), receiver operating characteristic (ROC), calibration curve, and decision curve analysis (DCA). Results A total of 356 patients were enrolled and they were randomly divided into a training cohort (60%, n=214) and a validation cohort (40%, n=143). Overall survival (OS) was worse for patients in either the low AAPR or the high AAPR group, whereas patients in the low AAPR with both high IBI group had the lowest OS (P<0.001). Finally, five variables were obtained after screening the best variables by three machine learning, and the nomogram was constructed. In both the development and validation cohorts, the C-index values exceeded 0.85, indicating that the predictive model has a strong predictive performance in terms of overall survival. The calibration curves and the decision curve analysis (DCA) showed that the nomogram demonstrated a superior benefit. Conclusion Preoperative AAPR and IBI can serve as effective indicators for predicting the OS of RC patients. We have developed a nomogram for predicting the OS of patients who underwent laparoscopic rectal cancer surgery.
Collapse
Affiliation(s)
- Xiangyong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| | - Zeyang Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| | - Chenxi Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| | - Mengya Xiong
- Operating Room, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| | - Yong Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
7
|
Zhao H, Zhou Y, Gu Q, Lin Y, Lan M. An explore method for quick screening biomarkers based on effective enrichment capacity and data mining. J Chromatogr A 2024; 1736:465413. [PMID: 39368193 DOI: 10.1016/j.chroma.2024.465413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.
Collapse
Affiliation(s)
- Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yifan Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
8
|
Chen X, Sun B, Zeng J, Yu Z, Liu J, Tan Z, Li Y, Peng C. Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5789-5806. [PMID: 38321212 DOI: 10.1007/s00210-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
Collapse
Affiliation(s)
- Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jia Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Luo Y, Zheng Y, Chen Z, Mo M, Xie J, Zhou X, Wu Y, Yang Q, Zheng M, Hu X, Chen L, Lan Z. Proangiogenic effect and underlying mechanism of holmium oxide nanoparticles: a new biomaterial for tissue engineering. J Nanobiotechnology 2024; 22:357. [PMID: 38902755 PMCID: PMC11191282 DOI: 10.1186/s12951-024-02642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Early angiogenesis provides nutrient supply for bone tissue repair, and insufficient angiogenesis will lead tissue engineering failure. Lanthanide metal nanoparticles (LM NPs) are the preferred materials for tissue engineering and can effectively promote angiogenesis. Holmium oxide nanoparticles (HNPs) are LM NPs with the function of bone tissue "tracking" labelling. Preliminary studies have shown that HNPs has potential of promote angiogenesis, but the specific role and mechanism remain unclear. This limits the biological application of HNPs. RESULTS In this study, we confirmed that HNPs promoted early vessel formation, especially that of H-type vessels in vivo, thereby accelerating bone tissue repair. Moreover, HNPs promoted angiogenesis by increasing cell migration, which was mediated by filopodia extension in vitro. At the molecular level, HNPs interact with the membrane protein EphrinB2 in human umbilical vein endothelial cells (HUVECs), and phosphorylated EphrinB2 can bind and activate VAV2, which is an activator of the filopodia regulatory protein CDC42. When these three molecules were inhibited separately, angiogenesis was reduced. CONCLUSION Overall, our study confirmed that HNPs increased cell migration to promote angiogenesis for the first time, which is beneficial for bone repair. The EphrinB2/VAV2/CDC42 signalling pathway regulates cell migration, which is an important target of angiogenesis. Thus, HNPs are a new candidate biomaterial for tissue engineering, providing new insights into their biological application.
Collapse
Affiliation(s)
- Yuxiao Luo
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yifan Zheng
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Wu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Yao H, Hu J, Shao Y, Shao Q, Zheng S. Aldo-keto Reductase 1B10 Restrains Cell Migration, Invasion, and Adhesion of Gastric Cancer via Regulating Integrin Subunit Alpha 5. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1197-1205. [PMID: 37823316 PMCID: PMC10765221 DOI: 10.5152/tjg.2023.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/06/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND/AIMS Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.
Collapse
Affiliation(s)
- Haibo Yao
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Junfeng Hu
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinshu Shao
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Ren JS, Bai W, Ding JJ, Ge HM, Wang SY, Chen X, Jiang Q. Hypoxia-induced AFAP1L1 regulates pathological neovascularization via the YAP-DLL4-NOTCH axis. J Transl Med 2023; 21:651. [PMID: 37737201 PMCID: PMC10515434 DOI: 10.1186/s12967-023-04503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pathological neovascularization plays a pivotal role in the onset and progression of tumors and neovascular eye diseases. Despite notable advancements in the development of anti-angiogenic medications that target vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), the occurrence of adverse reactions and drug resistance has somewhat impeded the widespread application of these drugs. Therefore, additional investigations are warranted to explore alternative therapeutic targets. In recent years, owing to the swift advancement of high-throughput sequencing technology, pan-cancer analysis and single-cell sequencing analysis have emerged as pivotal methodologies and focal areas within the domain of omics research, which is of great significance for us to find potential targets related to the regulation of pathological neovascularization. METHODS Pan-cancer analysis and scRNA-seq data analysis were employed to forecast the association between Actin filament-associated protein 1 like 1 (AFAP1L1) and the development of tumors and endothelial cells. Tumor xenograft model and ocular pathological neovascularization model were constructed as well as Isolectin B4 (IsoB4) staining and immunofluorescence staining were used to assess the effects of AFAP1L1 on the progression of neoplasms and neovascular eye diseases in vivo. Transwell assay, wound scratch assay, tube forming assay, three-dimensional germination assay, and rhodamine-phalloidin staining were used to evaluate the impact of AFAP1L1 on human umbilical vein endothelial cells (HUVECs) function in vitro; Dual luciferase reporting, qRT-PCR and western blot were used to investigate the upstream and downstream mechanisms of pathological neovascularization mediated by AFAP1L1. RESULTS Our investigation revealed that AFAP1L1 plays a crucial role in promoting the development of various tumors and demonstrates a strong correlation with endothelial cells. Targeted suppression of AFAP1L1 specifically in endothelial cells in vivo proves effective in inhibiting tumor formation and ocular pathological neovascularization. Mechanistically, AFAP1L1 functions as a hypoxia-related regulatory protein that can be activated by HIF-1α. In vitro experiments demonstrated that reducing AFAP1L1 levels can reverse hypoxia-induced excessive angiogenic capacity in HUVECs. The principal mechanism of angiogenesis inhibition entails the regulation of tip cell behavior through the YAP-DLL4-NOTCH axis. CONCLUSION In conclusion, AFAP1L1, a newly identified hypoxia-related regulatory protein, can be activated by HIF-1α. Inhibiting AFAP1L1 results in the inhibition of angiogenesis by suppressing the germination of endothelial tip cells through the YAP-DLL4-NOTCH axis. This presents a promising therapeutic target to halt the progression of tumors and neovascular eye disease.
Collapse
Affiliation(s)
- Jun-Song Ren
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen Bai
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jing-Juan Ding
- Department of Ophthalmology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Hui-Min Ge
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
| | - Su-Yu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Xi Chen
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|