1
|
Jung YH, Jo HY, Kim DH, Oh YJ, Kim M, Na S, Song HY, Lee HJ. Exosome-Mediated Mitochondrial Regulation: A Promising Therapeutic Tool for Alzheimer's Disease and Parkinson's Disease. Int J Nanomedicine 2025; 20:4903-4917. [PMID: 40259919 PMCID: PMC12011032 DOI: 10.2147/ijn.s513816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are representative neurodegenerative diseases with abnormal energy metabolism and altered distribution and deformation of mitochondria within neurons, particularly in brain regions such as the hippocampus and substantia nigra. Neurons have high energy demands; thus, maintaining a healthy mitochondrial population is important for their biological function. Recently, exosomes have been reported to have mitochondrial regulatory potential and antineurodegenerative properties. This review presents the mitochondrial abnormalities in brain cells associated with AD and PD and the potential of exosomes to treat these diseases. Specifically, it recapitulates research on the molecular mechanisms whereby exosomes regulate mitochondrial biogenesis, fusion/fission dynamics, mitochondrial transport, and mitophagy. Furthermore, this review discusses exosome-triggered signaling pathways that regulate nuclear factor (erythroid-derived 2)-like 2-dependent mitochondrial antioxidation and hypoxia inducible factor 1α-dependent metabolic reprogramming. In summary, this review aims to provide a profound understanding of the regulatory effect of exosomes on mitochondrial function in neurons and to propose exosome-mediated mitochondrial regulation as a promising strategy for AD and PD.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyo Youn Jo
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae Hyun Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon Ju Oh
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Minsoo Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Seunghyun Na
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
4
|
Kuo FC, Chen PC, You SY, Tsai CC, Tsai HY, Liu CJ, Wu DC, Lin MW, Huang B. Transplanting mitochondria from gastric epithelial cells reduces the malignancy of gastric cancer. Mitochondrion 2024; 78:101939. [PMID: 39067839 DOI: 10.1016/j.mito.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria are essential for energy supplementation and metabolic homeostasis of cancer cells. Using mitochondria transplantation to reduce the malignancy of gastric cancer (GC) cells is herein proposed. In our study normal human gastric mucous epithelium cell line (GES-1) showed a lower mitochondrial membrane potential (MMP) compared to immortalized human vascular endothelial cell line (EAhy 926) and human gastric adenocarcinoma cell line (AGS). The transplantation of GES-1 mitochondria to AGS were confirmed both by confocal microscopy and flow cytometry. After transplanting GES-1 mitochondria, the AGS showed a reduced cell migration, and invasion without affecting cell viability and apoptosis. Investigating the expression of proteins involved in epithelial-mesenchymal-transition (EMT), transplanted GES-1 mitochondria reduced the expression of mesenchymal markers α-SMA, MMP-9, snail, vimentin and N-cadherin, whereas the epithelial markers E-cadherin and clauding-1 were not changed. The proteins implicated in the cell cycle such as cyclin B1 and D1 were decreased. In mice, inoculation with AGS carrying the transplanted GES-1 mitochondria resulted in smaller sized tumors. Further investigating the mitochondrial balance, the transplanted GES-1 mitochondria were more stably preserved compared to endogenous AGS mitochondria. The MMP, ATP production and mitochondrial mass decreased in GES-1 mitochondria and the mitophagic proteins LC3 II and PINK1 were up-regulated. In conclusion the decreased malignancy of AGS was a result of exogenous GES-1 mitochondria transplantation. This suggests for a therapy with low efficiency mitochondria transplantation in the treatment of cancer cells.
Collapse
Affiliation(s)
- Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ping-Chen Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sheng-Yu You
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chung Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Seo KJ, Yoon JH, Chung BY, Lee HK, Park WS, Chae HS. Effects of photobiomodulation on colon cancer cell line HT29 according to mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112966. [PMID: 38970968 DOI: 10.1016/j.jphotobiol.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND/AIM Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Pathology, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bom Yee Chung
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Torcasio R, Gallo Cantafio ME, Veneziano C, De Marco C, Ganino L, Valentino I, Occhiuzzi MA, Perrotta ID, Mancuso T, Conforti F, Rizzuti B, Martino EA, Gentile M, Neri A, Viglietto G, Grande F, Amodio N. Targeting of mitochondrial fission through natural flavanones elicits anti-myeloma activity. J Transl Med 2024; 22:208. [PMID: 38413989 PMCID: PMC10898065 DOI: 10.1186/s12967-024-05013-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Teresa Mancuso
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Bruno Rizzuti
- SS Rende (CS), Department of Physics, CNR-NANOTEC, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018, Saragossa, Spain
| | | | - Massimo Gentile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS Di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
7
|
Zhitkevich A, Bayurova E, Avdoshina D, Zakirova N, Frolova G, Chowdhury S, Ivanov A, Gordeychuk I, Palefsky JM, Isaguliants M. HIV-1 Reverse Transcriptase Expression in HPV16-Infected Epidermoid Carcinoma Cells Alters E6 Expression and Cellular Metabolism, and Induces a Hybrid Epithelial/Mesenchymal Cell Phenotype. Viruses 2024; 16:193. [PMID: 38399969 PMCID: PMC10892743 DOI: 10.3390/v16020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The high incidence of epithelial malignancies in HIV-1 infected individuals is associated with co-infection with oncogenic viruses, such as high-risk human papillomaviruses (HR HPVs), mostly HPV16. The molecular mechanisms underlying the HIV-1-associated increase in epithelial malignancies are not fully understood. A collaboration between HIV-1 and HR HPVs in the malignant transformation of epithelial cells has long been anticipated. Here, we delineated the effects of HIV-1 reverse transcriptase on the in vitro and in vivo properties of HPV16-infected cervical cancer cells. A human cervical carcinoma cell line infected with HPV16 (Ca Ski) was made to express HIV-1 reverse transcriptase (RT) by lentiviral transduction. The levels of the mRNA of the E6 isoforms and of the factors characteristic to the epithelial/mesenchymal transition were assessed by real-time RT-PCR. The parameters of glycolysis and mitochondrial respiration were determined using Seahorse technology. RT expressing Ca Ski subclones were assessed for the capacity to form tumors in nude mice. RT expression increased the expression of the E6*I isoform, modulated the expression of E-CADHERIN and VIMENTIN, indicating the presence of a hybrid epithelial/mesenchymal phenotype, enhanced glycolysis, and inhibited mitochondrial respiration. In addition, the expression of RT induced phenotypic alterations impacting cell motility, clonogenic activity, and the capacity of Ca Ski cells to form tumors in nude mice. These findings suggest that HIV-RT, a multifunctional protein, affects HPV16-induced oncogenesis, which is achieved through modulation of the expression of the E6 oncoprotein. These results highlight a complex interplay between HIV antigens and HPV oncoproteins potentiating the malignant transformation of epithelial cells.
Collapse
Affiliation(s)
- Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Natalia Zakirova
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Galina Frolova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Sona Chowdhury
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Alexander Ivanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Joel M. Palefsky
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Dong Q, Wang J, Liu J, Zhang L, Xu Z, Kang Y, Xue P. Manganese-Based Redox Homeostasis Disruptor for Inducing Intense Ferroptosis/Apoptosis Through xCT Inhibition And Oxidative Stress Injury. Adv Healthc Mater 2023; 12:e2301453. [PMID: 37531240 DOI: 10.1002/adhm.202301453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Intracellular redox homeostasis plays an important role in promoting tumor progression, development and even treatment resistance. To this end, redox balance impairment may become a prospective therapeutic target of cancer. Herein, a manganese-based homeostasis modulator (MHS) is developed for inducing severe reactive oxygen species accumulation and glutathione (GSH) deprivation, where such redox dyshomeostasis brings about dramatic ferroptosis/apoptosis. Tumor-specific degradation of manganese oxide nanocarriers contributes to hypoxia alleviation and loaded cargo release, resulting in apoptosis by augmented sonodynamic therapy and chemodynamic therapy. On the other hand, regional oxygenation significantly downregulates the expression of activating transcription factor 4, which can synergize with the released sulfasalazine to inhibit the downstream cystine antiporter xCT. Biosynthesis of GSH is sufficiently interrupted by the xCT suppression, leading to the reduction of glutathione peroxidase 4 (GPx4) level. The resultant excessive lipid peroxides promote intense ferroptosis to motivate cell death. On this basis, splendid treatment outcome by MHS is substantiated both in vitro and in vivo, thanks to the synergy of antitumor immunity elicitation. Taken together, this paradigm provides an insightful strategy to evoke drastic ferroptosis/apoptosis toward therapeutics and may also expand the eligibility of manganese-derived nanoagents for medical applications.
Collapse
Affiliation(s)
- Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
10
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|