1
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
3
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang J, Gao W, Yu H, Xu Y, Bai C, Cong Q, Zhu Y. Research Progress on the Role of Epigenetic Methylation Modification in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1143-1156. [PMID: 38911291 PMCID: PMC11192199 DOI: 10.2147/jhc.s458734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing form of primary liver cancer, characterized by a poor prognosis and high mortality rate. A pivotal factor in HCC tumorigenesis is epigenetics, specifically the regulation of gene expression through methylation. This process relies significantly on the action of proteins that modify methylation, including methyltransferases, their associated binding proteins, and demethylases. These proteins are crucial regulators, orchestrating the methylation process by regulating enzymes and their corresponding binding proteins. This orchestration facilitates the reading, binding, detection, and catalysis of gene methylation sites. Methylation ences the development, prolisignificantly influferation, invasion, and prognosis of HCC. Furthermore, methylation modification and its regulatory mechanisms activate distinct biological characteristics in HCC cancer stem cells, such as inducing cancer-like differentiation of stem cells. They also influence the tumor microenvironment (TME) in HCC, modulate immune responses, affect chemotherapy resistance in HCC patients, and contribute to HCC progression through signaling pathway feedback. Given the essential role of methylation in genetic information, it holds promise as a potential tool for the early detection of HCC and as a target to improve drug resistance and promote apoptosis in HCC cells.
Collapse
Affiliation(s)
- Jing Wang
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Wenyue Gao
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Hongbo Yu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Yuting Xu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning, 116013, People’s Republic of China
| | - Qingwei Cong
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Ying Zhu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
5
|
Lou L, Deng T, Yuan Q, Wang L, Wang Z, Li X. Targeted silencing of SOCS1 by DNMT1 promotes stemness of human liver cancer stem-like cells. Cancer Cell Int 2024; 24:206. [PMID: 38867242 PMCID: PMC11170857 DOI: 10.1186/s12935-024-03322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Human liver cancer stem-like cells (HLCSLCs) are widely acknowledged as significant factors in the recurrence and eradication of hepatocellular carcinoma (HCC). The sustenance of HLCSLCs' stemness is hypothesized to be intricately linked to the epigenetic process of DNA methylation modification of genes associated with anticancer properties. The present study aimed to elucidate the stemness-maintaining mechanism of HLCSLCs and provide a novel idea for the clearance of HLCSLCs. METHODS The clinical relevance of DNMT1 and SOCS1 in hepatocellular carcinoma (HCC) patients was evaluated through the GEO and TCGA databases. Cellular immunofluorescence assay, methylation-specific PCR, chromatin immunoprecipitation were conducted to explore the expression of DNMT1 and SOCS1 and the regulatory relationship between them in HLCSLCs. Spheroid formation, soft agar colony formation, expression of stemness-associated molecules, and tumorigenicity of xenograft in nude mice were used to evaluate the stemness of HLCSLCs. RESULTS The current analysis revealed a significant upregulation of DNMT1 and downregulation of SOCS1 in HCC tumor tissues compared to adjacent normal liver tissues. Furthermore, patients exhibiting an elevated DNMT1 expression or a reduced SOCS1 expression had low survival. This study illustrated the pronounced expression and activity of DNMT1 in HLCSLCs, which effectively targeted the promoter region of SOCS1 and induced hypermethylation, consequently suppressing the expression of SOCS1. Notably, the stemness of HLCSLCs was reduced upon treatment with DNMT1 inhibitors in a concentration-dependent manner. Additionally, the overexpression of SOCS1 in HLCSLCs significantly mitigated their stemness. The knockdown of SOCS1 expression reversed the effect of DNMT1 inhibitor on the stemness of HLCSLCs. DNMT1 directly binds to the SOCS1 promoter. In vivo, DNMT1 inhibitors suppressed SOCS1 expression and inhibited the growth of xenograft. CONCLUSION DNMT1 targets the promoter region of SOCS1, induces hypermethylation of its CpG islands, and silences its expression, thereby promoting the stemness of HLCSLCs.
Collapse
Affiliation(s)
- Lei Lou
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Tingyun Deng
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Qing Yuan
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Lianghou Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Zhi Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Xiang Li
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China.
| |
Collapse
|
6
|
Zhao T, Fan J, Abu-Zaid A, Burley SK, Zheng XS. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells 2024; 13:781. [PMID: 38727317 PMCID: PMC11083943 DOI: 10.3390/cells13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.
Collapse
Affiliation(s)
- Tinghan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jialin Fan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ahmed Abu-Zaid
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Stephen K. Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - X.F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Gan Z, Zhao M, Xia Y, Yan Y, Ren W. Carbon metabolism in the regulation of macrophage functions. Trends Endocrinol Metab 2024; 35:62-73. [PMID: 37778898 DOI: 10.1016/j.tem.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Carbon metabolism, including one-carbon (1C) metabolism and central carbon metabolism (CCM), provides energy for the cell and generates metabolites with signaling activities. The regulation of macrophage polarization involves complex signals and includes an epigenetic level. Epigenetic modifications through changes in carbon metabolism allow macrophages to respond in a timely manner to their environment and adapt to metabolic demands during macrophage polarization. Here we summarize the current understanding of the crosstalk between carbon metabolism and epigenetic modifications in macrophages under physiological conditions and in the tumor microenvironment (TME) and provide targets and further directions for macrophage-associated diseases.
Collapse
Affiliation(s)
- Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China
| | - Yaoyao Xia
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China.
| |
Collapse
|
8
|
Liu N, Zhang H, Zhang C, Li Z, Huang L, Sun J, Qi J, Deng X, Huang N, Mu Y, Li Z, Tian H. DHX37 Is a Promising Prognostic Biomarker and a Therapeutic Target for Immunotherapy and Chemotherapy in HCC. Cancers (Basel) 2023; 15:5228. [PMID: 37958405 PMCID: PMC10648173 DOI: 10.3390/cancers15215228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
DHX37, a member of the DEAD/H-box RNA helicase family, has been implicated in various diseases, including tumors. However, the biological characteristics and prognostic significance of DHX37 in HCC remain unclear. In this study, we use R software 3.6.3 and multiple bioinformatics analysis tools, such as GDSC, HPA, STRING, TISCH, and TIMER2, to analyze the characterization and function of DHX37 in HCC. In addition, Western blot (WB) and immunohistochemistry (IHC) based on clinical samples validated some of the findings. DHX37 was more highly expressed in HCC samples compared to adjacent non-tumor tissues. Higher DHX37 expression is correlated with various clinicopathological characteristics in HCC, including AFP, adjacent hepatic tissue inflammation, histologic grade, T stage, and pathologic stage. Survival analysis revealed that the high DHX37 group had significantly shorter overall survival (OS), progress-free interval (PFI), and disease-specific survival (DSS) compared to the low DHX37 group. By analyzing the correlation between DHX37 and the IC50 of chemotherapeutic drugs, the results showed that DHX37 expression level was negatively correlated with the IC50 of 11 chemotherapeutic drugs. Further analysis indicated that DHX37 and its co-expressed genes may play important roles in activating the cell cycle, DNA repair, chemokine signaling pathways, and regulating the immune response, which leads to a poor prognosis in HCC. High expression of DHX37 is an independent risk factor for poor prognosis in HCC, and DHX37 is expected to be a potential target to inhibit tumor progression. Targeting DHX37 may enhance chemotherapeutic drug sensitivity and immunotherapeutic efficacy in HCC.
Collapse
Affiliation(s)
- Nanbin Liu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hailong Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunli Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zeyu Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Limin Huang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jin Sun
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Junan Qi
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- The First Ward of Hepatobiliary Pancreatic and Spleen Surgery, Baoji Municipal Central Hospital, Baoji 721008, China
| | - Xi Deng
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Na Huang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanhua Mu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (N.L.); (H.Z.); (C.Z.); (Z.L.); (L.H.); (J.S.); (X.D.); (N.H.); (Y.M.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi’an 710004, China;
- Tumor and Immunology Center of Precision Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
9
|
Santiago NA, He B, Howard SL, Beaudin S, Strupp BJ, Smith DR. Developmental Manganese Exposure Causes Lasting Attention Deficits Accompanied by Dysregulation of mTOR Signaling and Catecholaminergic Gene Expression in Brain Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549215. [PMID: 37503220 PMCID: PMC10370122 DOI: 10.1101/2023.07.16.549215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Elevated manganese (Mn) exposure is associated with attentional deficits in children, and is an environmental risk factor for attention deficit hyperactivity disorder (ADHD). We have shown that developmental Mn exposure causes lasting attention and sensorimotor deficits in a rat model of early childhood Mn exposure, and that these deficits are associated with a hypofunctioning catecholaminergic system in the prefrontal cortex (PFC), though the mechanistic basis for these deficits is not well understood. To address this, male Long-Evans rats were exposed orally to Mn (50 mg/kg/d) over PND 1-21 and attentional function was assessed in adulthood using the 5-Choice Serial Reaction Time Task. Targeted catecholaminergic system and epigenetic gene expression, followed by unbiased differential DNA methylation and gene regulation expression transcriptomics in the PFC, were performed in young adult littermates. Results show that developmental Mn exposure causes lasting focused attention deficits that are associated with reduced gene expression of tyrosine hydroxylase, dopamine transporter, and DNA methyltransferase 3a. Further, developmental Mn exposure causes broader lasting methylation and gene expression dysregulation associated with epigenetic regulation, inflammation, cell development, and hypofunctioning catecholaminergic neuronal systems. Pathway enrichment analyses uncovered mTOR and Wnt signaling pathway genes as significant transcriptomic regulators of the Mn altered transcriptome, and Western blot of total, C1 and C2 phospho-mTOR confirmed mTOR pathway dysregulation. Our findings deepen our understanding of the mechanistic basis of how developmental Mn exposure leads to lasting catecholaminergic dysfunction and attention deficits, which may aid future therapeutic interventions of environmental exposure associated disorders. Significance Statement Attention deficit hyperactivity disorder (ADHD) is associated with environmental risk factors, including exposure to neurotoxic agents. Here we used a rodent model of developmental manganese (Mn) exposure producing lasting attention deficits to show broad epigenetic and gene expression changes in the prefrontal cortex, and to identify disrupted mTOR and Wnt signaling pathways as a novel mechanism for how developmental Mn exposure may induce lasting attention and catecholaminergic system impairments. Importantly, our findings establish early development as a critical period of susceptibility to lasting deficits in attentional function caused by elevated environmental toxicant exposure. Given that environmental health threats disproportionately impact communities of color and low socioeconomic status, our findings can aid future studies to assess therapeutic interventions for vulnerable populations.
Collapse
|
10
|
Trinh A, Huang Y, Shao H, Ram A, Morival J, Wang J, Chung EJ, Downing TL. Targeting the ADPKD methylome using nanoparticle-mediated combination therapy. APL Bioeng 2023; 7:026111. [PMID: 37305656 PMCID: PMC10257530 DOI: 10.1063/5.0151408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DNA methylation aberrancies are found in autosomal dominant polycystic kidney disease (ADPKD), which suggests the methylome to be a promising therapeutic target. However, the impact of combining DNA methylation inhibitors (DNMTi) and ADPKD drugs in treating ADPKD and on disease-associated methylation patterns has not been fully explored. To test this, ADPKD drugs, metformin and tolvaptan (MT), were delivered in combination with DNMTi 5-aza-2'-deoxycytidine (Aza) to 2D or 3D cystic Pkd1 heterozygous renal epithelial cells (PKD1-Het cells) as free drugs or within nanoparticles to enable direct delivery for future in vivo applications. We found Aza synergizes with MT to reduce cell viability and cystic growth. Reduced representation bisulfite sequencing (RRBS) was performed across four groups: PBS, Free-Aza (Aza), Free-Aza+MT (F-MTAza), and Nanoparticle-Aza+MT (NP-MTAza). Global methylation patterns showed that while Aza alone induces a unimodal intermediate methylation landscape, Aza+MT recovers the bimodality reminiscent of somatic methylomes. Importantly, site-specific methylation changes associated with F-MTAza and NP-MTAza were largely conserved including hypomethylation at ADPKD-associated genes. Notably, we report hypomethylation of cancer-associated genes implicated in ADPKD pathogenesis as well as new target genes that may provide additional therapeutic effects. Overall, this study motivates future work to further elucidate the regulatory mechanisms of observed drug synergy and apply these combination therapies in vivo.
Collapse
Affiliation(s)
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Aparna Ram
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eun Ji Chung
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|