1
|
Xing X, Zhou Z, Peng H, Cheng S. Anticancer role of flubendazole: Effects and molecular mechanisms (Review). Oncol Lett 2024; 28:558. [PMID: 39355784 PMCID: PMC11443308 DOI: 10.3892/ol.2024.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Flubendazole, an anthelmintic agent with a well-established safety profile, has emerged as a promising anticancer drug that has demonstrated efficacy against a spectrum of cancer types over the past decade. Its anticancer properties encompass a multifaceted mechanism of action, including the inhibition of cancer cell proliferation, disruption of microtubule dynamics, regulation of cell cycle, autophagy, apoptosis, suppression of cancer stem cell characteristics, promotion of ferroptosis and inhibition of angiogenesis. The present review aimed to provide a comprehensive overview of the molecular underpinnings of the anticancer activity of flubendazole, highlighting key molecules and regulatory pathways. Given the breadth of the potential of flubendazole, further research is imperative to identify additional cancer types sensitive to flubendazole, refine experimental methodologies for enhancing its reliability, uncover synergistic drug combinations, improve its bioavailability and explore innovative administration methods. The present review provided a foundation for future studies on the role of flubendazole in oncology and described its molecular mechanisms of action.
Collapse
Affiliation(s)
- Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zongning Zhou
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongwei Peng
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Liang M, Wang Y, Liu L, Deng D, Yan Z, Feng L, Kong C, Li C, Li Y, Li G. Synergistic intravesical instillation for bladder cancer: CRISPR-Cas13a and fenbendazole combination therapy. J Exp Clin Cancer Res 2024; 43:223. [PMID: 39128990 PMCID: PMC11318243 DOI: 10.1186/s13046-024-03146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND CRISPR-Cas13a is renowned for its precise and potent RNA editing capabilities in cancer therapy. While various material systems have demonstrated efficacy in supporting CRISPR-Cas13a to execute cellular functions in vitro efficiently and specifically, the development of CRISPR-Cas13a-based therapeutic agents for intravesical instillation in bladder cancer (BCa) remains unexplored. METHODS In this study, we introduce a CRISPR-Cas13a nanoplatform, which effectively inhibits PDL1 expression following intravesical instillation. This system utilizes a fusion protein CAST, created through the genetic fusion of CRISPR-Cas13 and the transmembrane peptide TAT. CAST acts as a potent transmembrane RNA editor and is assembled with the transepithelial delivery carrier fluorinated chitosan (FCS). Upon intravesical administration into the bladder, the CAST-crRNAa/FCS nanoparticles (NPs) exhibit remarkable transepithelial capabilities, significantly suppressing PDL1 expression in tumor tissues.To augment immune activation within the tumor microenvironment, we integrated a fenbendazole (FBZ) intravesical system (FBZ@BSA/FCS NPs). This system is formulated through BSA encapsulation followed by FCS coating, positioning FBZ as a powerful chemo-immunological agent. RESULTS In an orthotropic BCa model, the FBZ@BSA/FCS NPs demonstrated pronounced tumor cell apoptosis, synergistically reduced PDL1 expression, and restructured the immune microenvironment. This culminated in an enhanced synergistic intravesical instillation approach for BCa. Consequently, our study unveils a novel RNA editor nanoagent formulation and proposes a potential synergistic therapeutic strategy. This approach significantly bolsters therapeutic efficacy, holding promise for the clinical translation of CRISPR-Cas13-based cancer perfusion treatments.
Collapse
Affiliation(s)
- Mingkang Liang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yongqiang Wang
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zeqin Yan
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lida Feng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenfan Kong
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yuqing Li
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| |
Collapse
|
3
|
Chen L, Zhao X, Liu X, Ouyang Y, Xu C, Shi Y. Development of small molecule drugs targeting immune checkpoints. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0034. [PMID: 38727005 PMCID: PMC11131045 DOI: 10.20892/j.issn.2095-3941.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to relieve and refuel anti-tumor immunity by blocking the interaction, transcription, and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints. Thousands of small molecule drugs or biological materials, especially antibody-based ICIs, are actively being studied and antibodies are currently widely used. Limitations, such as anti-tumor efficacy, poor membrane permeability, and unneglected tolerance issues of antibody-based ICIs, remain evident but are thought to be overcome by small molecule drugs. Recent structural studies have broadened the scope of candidate immune checkpoint molecules, as well as innovative chemical inhibitors. By way of comparison, small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features. Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions, including immune regulation, anti-angiogenesis, and cell cycle regulation. In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins, which will lay the foundation for further exploration.
Collapse
Affiliation(s)
- Luoyi Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinchen Zhao
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaowei Liu
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
Zhang J, Joshua AM, Li Y, O'Meara CH, Morris MJ, Khachigian LM. Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma. Cancer Lett 2024; 586:216633. [PMID: 38281663 DOI: 10.1016/j.canlet.2024.216633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.
Collapse
Affiliation(s)
- Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, ANU Medical School and Canberra Health Services, Australian National University, Acton, Canberra, ACT, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|