1
|
Abken H. CAR T cell therapies in gastrointestinal cancers: current clinical trials and strategies to overcome challenges. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01062-y. [PMID: 40229574 DOI: 10.1038/s41575-025-01062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Despite multimodal treatment options, most gastrointestinal cancers are still associated with high mortality rates and poor responsiveness to immunotherapy. The unprecedented efficacy of chimeric antigen receptor (CAR)-engineered T cells in the treatment of haematological malignancies raised interest in translating CAR T cell therapies to the treatment of gastrointestinal cancers. Treatment of solid cancers with canonical CAR T cells faces substantial challenges, including the dense architecture of the tumour tissue, the tolerogenic environment with low tumour-intrinsic immunogenicity, the rareness of targetable tumour-selective antigens, the antigenic heterogeneity of cancer cells, and the profound metabolic and immune cell disbalances. This Review provides an overview of CAR T cell trials in the treatment of gastrointestinal cancers, discussing considerations relating to safety, efficacy, potential reasons for failure and options for improving CAR T cells for the future. In addition, lessons regarding how to improve efficacy are drawn from CAR T cells armed with adjuvants that sustain their activation within the hostile environment and activate resident immune cells. As the field is rapidly evolving, current treatment modalities and editing CAR T cell functionalities are being refined towards a potentially more successful CAR T cell therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Hinrich Abken
- Leibniz Institute for Immunotherapy, Genetic Immunotherapy Division, Regensburg, Germany.
- Genetic Immunotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Shao Q, Deng J, Wu H, Huang Z. HER2-positive gastric cancer: from targeted therapy to CAR-T cell therapy. Front Immunol 2025; 16:1560280. [PMID: 40181988 PMCID: PMC11966040 DOI: 10.3389/fimmu.2025.1560280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent cancer on a global scale, with HER2-positive GC representing a distinct subtype that exhibits more intricate biological characteristics. Conventional chemotherapy typically exhibits restricted efficacy in the management of HER2-positive GC. In light of the incessant advancement in molecular targeted therapies, targeting HER2 has emerged as a promising therapeutic approach for this subtype. The advent of antibody-drug conjugates (ADCs) and chimeric antigen receptor T-cell therapy (CAR-T) has furnished novel treatment alternatives for HER2-positive GC. Nevertheless, owing to the pronounced heterogeneity of GC and the complex tumor microenvironment, drug resistance frequently emerges, thereby substantially influencing the effectiveness of HER2-targeted therapy. This article comprehensively summarizes and deliberates upon the strategies of HER2-targeted therapy as well as the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Qiangzu Shao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Junge Deng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Haoran Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Zeping Huang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| |
Collapse
|
3
|
Du H, Hao X, Lin B, Tang M, Wang D, Yang X, Wang J, Qin L, Yang Y, Du X. 177Lu-Labeled Anticlaudin 6 Monoclonal Antibody for Targeted Therapy in Esophageal Cancer. J Nucl Med 2025; 66:377-384. [PMID: 39915118 PMCID: PMC11876728 DOI: 10.2967/jnumed.124.268487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
Advanced or metastatic esophageal cancer (EC) is associated with poor prognosis, necessitating new and effective treatment methods. We assess whether claudin 6 (CLDN6) is a useful target for the imaging and radiopharmaceutical therapy of EC using a novel pair of radioactive nuclides, 89Zr and 177Lu. Methods: CLDN6 messenger RNA expression was evaluated in 2 EC datasets (n = 436) and through a retrospective analysis of 109 patients with EC. We then used an anti-CLDN6 monoclonal antibody (IMAB027) labeled with 89Zr and 177Lu ([89Zr]Zr-DFO-IMAB027 and [177Lu]Lu-DOTA-IMAB027) for PET imaging and therapy, respectively. Imaging and biodistribution analyses were performed using the TE-1-CLDN6 xenograft model. Finally, the therapeutic potential of [177Lu]Lu-DOTA-IMAB027 was evaluated in both the TE-1-CLDN6 and the CLDN6-PDX (patient-derived xenograft) models. Results: CLDN6 messenger RNA expression was elevated in EC compared with healthy esophageal tissues. The CLDN6 expression rate was 0 in healthy esophageal tissue but was 79.8% in EC tissue. The [89Zr]Zr-DFO-IMAB027 showed the ability to effectively image EC xenografts with high CLDN6 expression. In the TE-1-CLDN6 model, there was a significant difference in tumor volume between the 11.1-MBq [177Lu]Lu-DOTA-IMAB027 treatment group and the control group (P < 0.001). The tumor growth inhibition rate in the 11.1-MBq [177Lu]Lu-DOTA-IMAB027 group was 101.74%. In the PDX model, significant differences in tumor volume were observed among all [177Lu]Lu-DOTA-IMAB027 treatment groups and the control group (P < 0.05). Specifically, the tumor growth inhibition rate of the 11.1-MBq [177Lu]Lu-DOTA-IMAB027 group was 79.04%, whereas that of the 3.7-MBq group was 77.20%. However, the difference in efficacy between the high-dose and low-dose groups was not statistically significant (P > 0.05). Conclusion: The differential expression of CLDN6 between tumors and the normal esophagus shows its potential as a diagnostic and therapeutic target for EC. The radiotracer [89Zr]Zr-DFO-IMAB027 showed high contrast when visualizing CLDN6-expressing xenografts for PET imaging, and [177Lu]Lu-DOTA-IMAB027 induced rapid tumor regression in both the TE-1-CLDN6 and the CLDN6-PDX models. This research has implications for improving the radioligand diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Huan Du
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xiaofei Hao
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Binwei Lin
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingming Tang
- Clinical Medical School, North Sichuan Medical College, Nanchong, China
| | - Decai Wang
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Clinical Medical School, North Sichuan Medical College, Nanchong, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China; and
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China; and
| | - Liling Qin
- Pathology Department, First People's Hospital of Mianyang, Mianyang, China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China; and
| | - Xiaobo Du
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China;
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Clinical Medical School, North Sichuan Medical College, Nanchong, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
4
|
Lyu SI, Fretter C, Eckel HNC, Knipper K, Schultheis AM, Büttner R, Quaas A, Klussmann JP, Simon AG. High expression of H2AX/γ-H2AX is associated with distinct biological pathway alterations and shorter survival in oropharyngeal squamous cell carcinoma. Oral Oncol 2025; 161:107171. [PMID: 39756240 DOI: 10.1016/j.oraloncology.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The histone gene H2AX and its phosphorylated protein γ-H2AX play a crucial role in the DNA damage response. This study investigates the expression of H2AX mRNA and its phosphorylated γ-H2AX protein in oropharyngeal squamous cell carcinoma (OPSCC), its association with distinct biological pathway alterations and its potential as a biomarker. MATERIALS AND METHODS Expression of H2AX mRNA in 76 OPSCC from The Cancer Genome Atlas (TCGA) cohort was analyzed. Patients were stratified into H2AXhigh- and H2AXlow OPSCC based on a survival-associated cutoff. Differentially expressed genes were identified using DESeq2, followed by pathway enrichment analyses. Immunohistochemical staining of γ-H2AX protein expression was performed on an independent cohort of 209 OPSCC, followed by survival and Cox regression analyses. RESULTS High H2AX mRNA expression was a significant prognostic factor associated with shorter OS in the TCGA OPSCC cohort (HR 4.77, p = 0.04). In H2AXhigh tumors, differential gene expression analysis revealed upregulation of genes regulating DNA repair and cell cycle (CDK1, CCNB1, ZWINT). High γ-H2AX protein expression was significantly associated with HPV-negative OPSCC (p = 0.005), and remained an independent predictor of poor survival in the total OPSCC cohort (HR 2.24, p = 0.03) and particularly in HPV-negative patients (HR 3.67, p = 0.007). CONCLUSION H2AX/γ-H2AX expression is a potential prognostic biomarker in OPSCC, with elevated levels indicating poor survival, especially in HPV-negative cases. These findings suggest distinct molecular behaviors in OPSCC based on H2AX expression and highlight the need for further investigation into its therapeutic implications.
Collapse
Affiliation(s)
- Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Caroline Fretter
- Institute of Pathology, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50937 Cologne, Germany; Department of Internal Medicine, Lee Health Hospital, Florida State University College of Medicine at Cape Coral, 636 Del Prado Boulevard, Cape Coral, FL 33990, USA.
| | - Hans Nikolaus Caspar Eckel
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50973 Cologne, Germany.
| | - Karl Knipper
- Department of General, Visceral and Cancer Surgery, University of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50973 Cologne, Germany.
| | - Anne Maria Schultheis
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany.
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50973 Cologne, Germany.
| | - Adrian Georg Simon
- Institute of Pathology, University Hospital of Cologne, University Cologne, Faculty of Medicine, Kerpener Strasse 62, 50937 Cologne, Germany.
| |
Collapse
|
5
|
Li W, Zeng M, Ning Y, Lu R, Wei Y, Xu Z, Wei H, Pu J. m 6A-Methylated NUTM2B-AS1 Promotes Hepatocellular Carcinoma Stemness Feature via Epigenetically Activating BMPR1A Transcription. J Hepatocell Carcinoma 2024; 11:2393-2411. [PMID: 39649245 PMCID: PMC11624692 DOI: 10.2147/jhc.s480522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Oncofetal proteins are the optimal diagnostic biomarkers and therapeutic targets for HCC. As the most abundant modification in RNA, N6-methyladenosine (m6A) has been reported to be involved in HCC initiation and progression. However, whether m6A has oncofetal characteristics remains unknown. Methods Gene expression in HCC tissues and cells was detected using qPCR. The level of m6A methylation was determined using methylated RNA immunoprecipitation assay. The biological roles of NUTM2B-AS1 in HCC were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine incorporation, and spheroid formation assays. The mechanisms underlying the roles of NUTM2B-AS1 were explored using RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), chromatin immunoprecipitation (ChIP), and assay for transposase-accessible chromatin (ATAC). Results NUTM2B-AS1 was identified as a novel oncofetal long noncoding RNA that was upregulated in the fetal liver and HCC and silenced in adult liver tissues. METTL3 and METTL16 induce m6A hypermethylation of NUTM2B-AS1. The m6A methylation levels of NUTM2B-AS1 exhibit oncofetal characteristics. m6A methylation upregulates NUTM2B-AS1 expression by increasing NUTM2B-AS1 transcript stability. m6A-methylated NUTM2B-AS1 promotes HCC cell proliferation and stemness via epigenetically activating BMPR1A expression. NUTM2B-AS1 specifically binds to BMPR1A promoter. m6A-methylated NUTM2B-AS1 is recognized by the m6A reader YTHDC2, which further binds to the H3K4 methyltransferase MLL1. m6A-methylated NUTM2B-AS1 recruits YTHDC2 and MLL1 to BMPR1A promoter, leading to increased H3K4me3 and chromatin accessibility at BMPR1A promoter. Functional rescue assays suggest that BMPR1A is a critical mediator of the oncogenic role of m6A-methylated NUTM2B-AS1 in HCC. Conclusion METTL3- and METTL16-mediated m6A methylation of NUTM2B-AS1 is a novel oncofetal molecular event in HCC that promotes HCC stemness via epigenetically activating BMPR1A transcription.
Collapse
Affiliation(s)
- Wenchuan Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
6
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
8
|
Hompe ED, Sachdeva UM. Updates in Translational Science for Esophageal and Gastric Cancers. Surg Oncol Clin N Am 2024; 33:571-581. [PMID: 38789199 DOI: 10.1016/j.soc.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this article, the authors summarize the current state of translational science for esophageal and gastric cancers. The available targeted therapies, immunotherapies, and recently discovered molecular targets are reviewed. The authors introduce circulating tumor deoxyribonucleic acid and its promise as a biomarker to detect disease recurrence. The authors present patient-derived organoids as a new model for studying carcinogenesis and treatment responses. Finally, we discuss the implications of organoid models for precision oncology and describe exciting new work applying gene editing technology to organoids and studying tumor-microenvironment interactions using 3-dimensional co-culture systems.
Collapse
Affiliation(s)
- Eliza D Hompe
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA; Department of Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Kraemer M, Zander T, Alakus H, Buettner R, Lyu SI, Simon AG, Schroeder W, Bruns CJ, Quaas A. Fetal gut cell-like differentiation in esophageal adenocarcinoma defines a rare tumor subtype with therapeutically relevant claudin-6 positivity and SWI/SNF gene alteration. Sci Rep 2024; 14:13474. [PMID: 38866822 PMCID: PMC11169473 DOI: 10.1038/s41598-024-64116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is one of the deadliest tumor entities worldwide, with a 5-year survival rate of less than 25%. Unlike other tumor entities, personalized therapy options are rare, partly due to the lack of knowledge about specific subgroups. In this publication, we demonstrate a subgroup of patients with EAC in a large screening cohort of 826 patients, characterized by specific morphological and immunohistochemical features. This subgroup represents approximately 0.7% (6/826) of the total cohort. Morphological features of this subgroup show a striking clear cytoplasm of the tumour cells and the parallel existence of rare growth patterns like yolk sac-like differentiation and enteroblastic differentiation. Immunohistochemistry reveals expression of the fetal gut cell-like proteins Sal-like protein 4 (SALL4), claudin-6, and glypican 3. Interestingly, we find a correlation with alterations of SWI/SNF-complex associated genes, which are supposed to serve as tumor suppressor genes in various tumour entities. Our results suggest a possible implication of rare tumour subtypes in the WHO classification for EACs according to the classification for gastric cancer. Furthermore, claudin-6 positive tumors have shown promising efficacy of CAR T cell therapy in the recently published BNT-211-01 trial (NCT04503278). This represents a personalized therapeutic option for this tumor subtype.
Collapse
Affiliation(s)
- Max Kraemer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Thomas Zander
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Su Ir Lyu
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Stadler CR, Ellinghaus U, Fischer L, Bähr-Mahmud H, Rao M, Lindemann C, Chaturvedi A, Scharf C, Biermann I, Hebich B, Malz A, Beresin G, Falck G, Häcker A, Houben A, Erdeljan M, Wolf K, Kullmann M, Chang P, Türeci Ö, Şahin U. Preclinical efficacy and pharmacokinetics of an RNA-encoded T cell-engaging bispecific antibody targeting human claudin 6. Sci Transl Med 2024; 16:eadl2720. [PMID: 38776391 DOI: 10.1126/scitranslmed.adl2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-μg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).
Collapse
Affiliation(s)
| | | | - Leyla Fischer
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Martin Rao
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | | | - Imke Biermann
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | - Georg Beresin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Georg Falck
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Aline Häcker
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Astrid Houben
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Kristina Wolf
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Philip Chang
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
- HI-TRON (Helmholtz Institute for Translational Oncology) Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
- HI-TRON (Helmholtz Institute for Translational Oncology) Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
- TRON gGmbH-Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
- Institute for Immunology, University Medical Center (UMC) of the Johannes Gutenberg University, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| |
Collapse
|
11
|
Hu HH, Wang SQ, Zhao H, Chen ZS, Shi X, Chen XB. HER2 + advanced gastric cancer: Current state and opportunities (Review). Int J Oncol 2024; 64:36. [PMID: 38391024 PMCID: PMC10901538 DOI: 10.3892/ijo.2024.5624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)+ gastric cancer (GC) is a distinct subtype of GC, accounting for 10‑20% of all cases of GC. Although the development of the anti‑HER2 monoclonal antibody trastuzumab has markedly improved response rates and prognosis of patients with HER2+ advanced GC (AGC), drug resistance remains a considerable challenge. Therefore, dynamic monitoring of HER2 expression levels can facilitate the identification of patients who may benefit from targeted therapy. Besides trastuzumab, DS‑8201 and RC48 have been applied in the treatment of HER2+ AGC, and several novel anti‑HER2 therapies are undergoing preclinical/clinical trials. At present, combination immunotherapy with anti‑HER2 agents is used as the first‑line treatment of this disease subtype. New promising approaches such as chimeric antigen receptor T‑cell immunotherapy and cancer vaccines are also being investigated for their potential to improve clinical outcomes. The current review provides new insights that will guide the future application of anti‑HER2 therapy by summarizing research progress on targeted therapy drugs for HER2+ AGC and combination treatments.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Sai-Qi Wang
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xiaojing Shi
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Bing Chen
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Department of Oncology, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|