1
|
Shen K, Hu C, Zhang Y, Cheng X, Xu Z, Pan S. Advances and applications of multiomics technologies in precision diagnosis and treatment for gastric cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189336. [PMID: 40311712 DOI: 10.1016/j.bbcan.2025.189336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Gastric cancer (GC), one of the most prevalent malignancies worldwide, is distinguished by extensive genetic and phenotypic heterogeneity, posing persistent challenges to conventional diagnostic and therapeutic strategies. The significant global burden of GC highlights an urgent need to unravel its complex underlying mechanisms, discover novel diagnostic and prognostic biomarkers, and develop more effective therapeutic interventions. In this context, this review comprehensively examines the transformative roles of cutting-edge technologies, including radiomics, pathomics, genomics, transcriptomics, epigenomics, proteomics, and metabolomics, in advancing precision diagnosis and treatment for GC. Multiomics data analysis not only deepens our understanding of GC pathogenesis and molecular subtypes but also identifies promising biomarkers, facilitating the creation of tailored therapeutic approaches. Additionally, integrating multiomics approaches holds immense potential for elucidating drug resistance mechanisms, predicting patient outcomes, and uncovering novel therapeutic targets, thereby laying a robust foundation for precision medicine in the comprehensive management of GC.
Collapse
Affiliation(s)
- Ke Shen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Siwei Pan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
2
|
Yadav H, Roberts PA, Lopez-Arredondo D. Combating Root-Knot Nematodes ( Meloidogyne spp.): From Molecular Mechanisms to Resistant Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:1321. [PMID: 40364350 PMCID: PMC12073475 DOI: 10.3390/plants14091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are significant plant-parasitic nematodes that cause major yield losses worldwide. With growing awareness of the harmful effects of chemical pesticides on human health and the environment, there is an urgent need to develop alternative strategies for controlling RKN in agricultural fields. In recent years, implementing multiple approaches based on transcriptomics, genomics, and genome engineering, including modern platforms like CRISPR/Cas9, along with traditional genetic mapping, has led to great advances in understanding the plant-RKN interactions and the underlying molecular mechanisms of plant RKN resistance. In this literature review, we synthesize the contributions of relevant studies in this field and discuss key findings. This includes, for instance, transcriptomics studies that helped expand our understanding of plant RKN-resistance mechanisms, the overexpression of plant hormone-related genes, and the silencing of susceptibility genes that lead to plant RKN resistance. This review was conducted by searching scientific sources, including PubMed and Google Scholar, for relevant publications and filtering them using keywords such as RKN-plant defense mechanisms, host-plant resistance against RKN, and genetic mapping for RKN. This knowledge can be leveraged to accelerate the development of RKN-resistant plants and substantially improve RKN management in economically important crops.
Collapse
Affiliation(s)
- Himanshu Yadav
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, CA 92521, USA;
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|