1
|
Catania R, Quinn S, Rahsepar AA, Agirlar Trabzonlu T, Bisen JB, Chow K, Lee DC, Avery R, Kellman P, Allen BD. Quantitative Stress First-Pass Perfusion Cardiac MRI: State of the Art. Radiographics 2025; 45:e240115. [PMID: 39977349 DOI: 10.1148/rg.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Quantitative stress perfusion (qPerf) cardiac magnetic resonance (CMR) imaging is a noninvasive approach used to quantify myocardial blood flow (MBF). Compared with visual analysis, qPerf CMR has superior diagnostic accuracy in the detection of myocardial ischemia and assessment of ischemic burden. In the evaluation of epicardial coronary artery disease (CAD), qPerf CMR improves the distinction of single-vessel from multivessel disease, yielding a more accurate estimate of the ischemic burden, and in turn improving patient management. In patients with chest pain without epicardial CAD, the findings of lower stress MBF and myocardial perfusion reserve (MPR) allow the diagnosis of microvascular dysfunction (MVD). Given its accuracy, MBF quantification with stress CMR has been introduced into the most recent recommendations for diagnosis in patients who have ischemia with nonobstructive CAD. Recent studies have shown a greater decrease in stress MBF and MPR in patients with three-vessel CAD compared with those in patients with MVD, demonstrating an important role that quantitative stress CMR can play in differentiating these etiologies in patients with stable angina. In cases of hypertrophic cardiomyopathy and cardiac amyloidosis, qPerf CMR aids in early diagnosis of ischemia and in risk assessment. Ischemia also results from alterations in hemodynamics that may occur with valve disease such as aortic stenosis or in cases of heart failure. qPerf CMR has emerged as a useful noninvasive tool for detection of cardiac allograft vasculopathy in patients who have undergone heart transplant. The authors review the basic principles and current primary clinical applications of qPerf CMR. ©RSNA, 2025 Supplemental material is available for this article. See the invited commentary by Leung and Ng in this issue.
Collapse
Affiliation(s)
- Roberta Catania
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Sandra Quinn
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Amir A Rahsepar
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Tugce Agirlar Trabzonlu
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Jay B Bisen
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Kelvin Chow
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Daniel C Lee
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Ryan Avery
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Peter Kellman
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| | - Bradley D Allen
- From the Department of Radiology (R.C., S.Q., A.A.R., T.A.T., J.B.B., K.C., R.A., B.D.A.) and Department of Medicine, Division of Cardiology (D.C.L.), Northwestern University Feinberg School of Medicine, 676 N St. Clair St, Ste 800, Arkes Family Pavilion, Chicago, IL 60611; Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Ill (K.C.); and National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md (P.K.)
| |
Collapse
|
2
|
Chen Z, Sun Y, Yang N, Nan J, Cao L, Zhao L, Liu S, Xu J, Li Y, He X, Wu Y, Gao J, Chen Z, Cao L, Zhang Y, Li Y, Xu Q, Jiang S, Cao J, Wei F, Mao X, Zhang Z, Wang Y, Lei J. High altitudes, deeper insights: multicenter cardiovascular magnetic resonance study on hypertrophic cardiomyopathy. Eur Radiol 2024:10.1007/s00330-024-11305-2. [PMID: 39741217 DOI: 10.1007/s00330-024-11305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVES Altitude is a known factor in cardiovascular disease, but its impact on hypertrophic cardiomyopathy (HCM) patients remains unclear. This study aimed to determine whether living at high altitudes affects the extent of late gadolinium enhancement (LGE) and left ventricular (LV) strain in HCM patients. METHODS This retrospective cross-sectional study was conducted across four hospitals located at different altitudes in China. A total of 256 HCM patients who underwent cardiac magnetic resonance (CMR) imaging between May 2019 and November 2021 were included. Patients were categorized into two groups: the high-altitude group (median interquartile range [IQR]: 1520.00 [1520.00, 1917.00] meters, n = 132) and the low-altitude group (86.45 [43.50, 150.75] meters, n = 124). The extent of LGE and global LV strain were assessed and compared between these groups. RESULTS The median age of the study population was 55 years (IQR: 46-63), with 59% of participants being male. The high-altitude group exhibited a significantly greater extent of LGE compared to the low-altitude group (median [IQR]: 8.10 [4.78, 19.98]% vs. 6.20 [1.89, 13.81]%; p = 0.008). Multivariable analysis identified altitude as an independent predictor of increased LGE extent (β = 4.41; 95% CI: 2.04 to 6.78; p < 0.001). Additionally, altitude was positively associated with LV strain in the longitudinal, circumferential, and radial directions (all p < 0.050). CONCLUSION HCM patients living at higher altitudes exhibit a significant increase in LGE extent and more favorable LV strain parameters. KEY POINTS Question Does altitude affect the extent of late gadolinium enhancement (LGE) and left ventricular strain in patients with hypertrophic cardiomyopathy (HCM)? Findings High altitude is associated with a significantly greater extent of LGE and less impairment in global longitudinal strain in HCM patients. Clinical relevance HCM patients living at higher altitudes exhibit a significant increase in LGE extent and the mismatch of left ventricular strains. Doctors should consider these findings to tailor treatment and follow-up plans for HCM patients living in high altitudes.
Collapse
Affiliation(s)
- Zixian Chen
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yue Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Yang
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Jiang Nan
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Likun Cao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shengliang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jizhe Xu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuxi Li
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiangui He
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yi Wu
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Jian Gao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Zixuan Chen
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Liang Cao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yaping Zhang
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yanyu Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu Jiang
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First People's Hospital of Yancheng, Yancheng, China
| | - Jian Cao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangying Wei
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiaojie Mao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Zhuoli Zhang
- Departments of Radiological Sciences, University of California, Irvine, USA
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China.
| |
Collapse
|
3
|
Lu Y, Xue ZK, Gao W, Bai G, Zhang X, Chen KY, Li G. Microcirculatory dysfunction in hypertrophic cardiomyopathy with chest pain assessed by angiography-derived microcirculatory resistance. Sci Rep 2024; 14:16977. [PMID: 39043796 PMCID: PMC11266537 DOI: 10.1038/s41598-024-67979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Chest pain, a common initial symptom in hypertrophic cardiomyopathy (HCM) patients, is closely linked to myocardial ischemia, despite the absence of significant coronary artery stenosis. This study explored microvascular dysfunction in HCM patients by employing angiography-derived microcirculatory resistance (AMR) as a novel tool for comprehensive assessment. This retrospective analysis included HCM patients with chest pain as the primary symptom and control patients without cardiac hypertrophy during the same period. The AMR was computed through angiography, providing a wire-free and adenosine-free index for evaluating microcirculatory function. Propensity score matching ensured balanced demographics between groups. This study also investigated the correlation between the AMR and clinical outcomes by utilizing echocardiography and follow-up data. After matching, 76 HCM patients and 152 controls were analyzed. While there was no significant difference in the incidence of epicardial coronary stenosis, the AMR of three epicardial coronary arteries was markedly greater in HCM patients. The criterion of an AMR ≥ 250 mmHg*s/m was that 65.7% of HCM patients experienced coronary microvascular dysfunction (CMD). Independent risk factors for CMD included increased left ventricular (LV) wall thickness (OR = 1.209, 95% CI 1.013-1.443, p = 0.036). Furthermore, an AMR_LAD ≥ 250 mmHg*s/m had an increased cumulative risk of the endpoint (log-rank p = 0.023) and was an independent risk factor for the endpoint (HR = 11.64, 95% CI 1.13-120.03, p = 0.039), providing valuable prognostic insights.
Collapse
Affiliation(s)
- Yahui Lu
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zheng-Kai Xue
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenqing Gao
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Geng Bai
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaowei Zhang
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kang-Yin Chen
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Guangping Li
- Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
4
|
Coleman JA, Doste R, Ashkir Z, Coppini R, Sachetto R, Watkins H, Raman B, Bueno-Orovio A. Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study. Cardiovasc Res 2024; 120:914-926. [PMID: 38646743 PMCID: PMC11218689 DOI: 10.1093/cvr/cvae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. METHODS AND RESULTS Computational models of human HCM cardiomyocytes, tissue, and ventricles were used to simulate outcomes of Phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n = 12 cells, N = 5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N = 28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarization, and (iii) ischaemia, impaired repolarization, and diffuse fibrosis. HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of ∼75 000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia-fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. CONCLUSION HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Rafael Sachetto
- Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Yao L, Ta S, Wang J, Han C, Lei C, Li W, Li J, Wang B, Zhao X, Liu L. Myocardial perfusion improvement and mechanism after percutaneous intramyocardial septal radiofrequency ablation in obstructive hypertrophic cardiomyopathy: a study of myocardial contrast echocardiography. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1483-1492. [PMID: 38709352 DOI: 10.1007/s10554-024-03126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The data on myocardial perfusion of the percutaneous intramyocardial septal radiofrequency ablation (PIMSRA) for obstructive hypertrophic cardiomyopathy (HOCM) are still lacking, although PIMSRA have been proved to be of great safety and efficacy. The aim of this study was to quantitatively analyze the changes in myocardial perfusion after PIMSRA using myocardial contrast echocardiography (MCE). 27 HOCM patients treated with PIMSRA were retrospectively analyzed, and their echocardiographic parameters and perfusion parameters of MCE were collected before and 12 months after PIMSRA. A reperfusion curve was used to quantify microvascular blood volume (A), microvascular flux rate (β), and microvascular blood flow (MBF) of each segment. Then the value difference (Δ) of parameters between post- and pre-operation were calculated. Finally, the correlation between the changes in MBF and in each echocardiographic parameter was analyzed. (1) Compared with baseline, the global A, β and MBF were significantly increased in HOCM patients after PIMSRA (all P < 0.001). The β, MBF were increased in the interventricular septum (P < 0.001, respectively), and the A, β, MBF were increased in the left ventricular wall (all P < 0.001). (2) Correlation analysis showed that the ΔMBF of interventricular septum was mainly negatively correlated with the maximum interventricular septum thickness (ΔIVSTmax, r=-0.670, P < 0.001), mean interventricular septum thickness (ΔIVSTmean, r=-0.690, P < 0.001), and left ventricular mass index (ΔLVMI, r=-0.774, P < 0.001), while the ΔMBF of left ventricular wall was positively correlated with left ventricular end-diastolic volume index (ΔLVEDVI, r = 0.621, P = 0.001) and stroke volume index (ΔSVI, r = 0.810, P < 0.001). Myocardial perfusion was improved at both interventricular septum and ventricular wall in HOCM patients after PIMSRA. MCE can provide a new dimension for the efficacy evaluation to PIMSRA procedure.
Collapse
Affiliation(s)
- Lu Yao
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Shengjun Ta
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jing Wang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chao Han
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Changhui Lei
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Wenxia Li
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Bo Wang
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xueli Zhao
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Liwen Liu
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
6
|
Goldie FC, Lee MMY, Coats CJ, Nordin S. Advances in Multi-Modality Imaging in Hypertrophic Cardiomyopathy. J Clin Med 2024; 13:842. [PMID: 38337535 PMCID: PMC10856479 DOI: 10.3390/jcm13030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the myocardium with myofilament disarray and myocardial hyper-contractility, leading to left ventricular hypertrophy and fibrosis. Where culprit genes are identified, they typically relate to cardiomyocyte sarcomere structure and function. Multi-modality imaging plays a crucial role in the diagnosis, monitoring, and risk stratification of HCM, as well as in screening those at risk. Following the recent publication of the first European Society of Cardiology (ESC) cardiomyopathy guidelines, we build on previous reviews and explore the roles of electrocardiography, echocardiography, cardiac magnetic resonance (CMR), cardiac computed tomography (CT), and nuclear imaging. We examine each modality's strengths along with their limitations in turn, and discuss how they can be used in isolation, or in combination, to facilitate a personalized approach to patient care, as well as providing key information and robust safety and efficacy evidence within new areas of research.
Collapse
Affiliation(s)
- Fraser C. Goldie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Matthew M. Y. Lee
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Caroline J. Coats
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Sabrina Nordin
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
7
|
Coleman JA, Doste R, Beltrami M, Coppini R, Olivotto I, Raman B, Bueno-Orovio A. Electrophysiological mechanisms underlying T wave pseudonormalisation on stress ECGs in hypertrophic cardiomyopathy. Comput Biol Med 2024; 169:107829. [PMID: 38096763 DOI: 10.1016/j.compbiomed.2023.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Pseudonormal T waves may be detected on stress electrocardiograms (ECGs) in hypertrophic cardiomyopathy (HCM). Either myocardial ischaemia or purely exercise-induced changes have been hypothesised to contribute to this phenomenon, but the precise electrophysiological mechanisms remain unknown. METHODS Computational models of human HCM ventricles (n = 20) with apical and asymmetric septal hypertrophy phenotypes with variable severities of repolarisation impairment were used to investigate the effects of acute myocardial ischaemia on ECGs with T wave inversions at baseline. Virtual 12-lead ECGs were derived from a total of 520 biventricular simulations, for cases with regionally ischaemic K+ accumulation in hypertrophied segments, global exercise-induced serum K+ increases, and/or increased pacing frequency, to analyse effects on ECG biomarkers including ST segments, T wave amplitudes, and QT intervals. RESULTS Regional ischaemic K+ accumulation had a greater impact on T wave pseudonormalisation than exercise-induced serum K+ increases, due to larger reductions in repolarisation gradients. Increases in serum K+ and pacing rate partially corrected T waves in some anatomical and electrophysiological phenotypes. T wave morphology was more sensitive than ST segment elevation to regional K+ increases, suggesting that T wave pseudonormalisation may sometimes be an early, or the only, ECG feature of myocardial ischaemia in HCM. CONCLUSIONS Ischaemia-induced T wave pseudonormalisation can occur on stress ECG testing in HCM before significant ST segment changes. Some anatomical and electrophysiological phenotypes may enable T wave pseudonormalisation due to exercise-induced increased serum K+ and pacing rate. Consideration of dynamic T wave abnormalities could improve the detection of myocardial ischaemia in HCM.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Alajmi F, Kang M, Dundas J, Haenel A, Parker J, Blanke P, Coghlan F, Khoo JK, Bin Zaid AA, Singh A, Heydari B, Yeung D, Roston TM, Ong K, Leipsic J, Laksman Z. Novel Magnetic Resonance Imaging Tools for Hypertrophic Cardiomyopathy Risk Stratification. Life (Basel) 2024; 14:200. [PMID: 38398708 PMCID: PMC10889913 DOI: 10.3390/life14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder with a well described risk of sudden cardiac death; however, risk stratification has remained a challenge. Recently, novel parameters in cardiac magnetic resonance imaging (CMR) have shown promise in helping to improve upon current risk stratification paradigms. In this manuscript, we have reviewed novel CMR risk markers and their utility in HCM. The results of the review showed that T1, extracellular volume, CMR feature tracking, and other miscellaneous novel CMR variables have the potential to improve sudden death risk stratification and may have additional roles in diagnosis and prognosis. The strengths and weaknesses of these imaging techniques, and their potential utility and implementation in HCM risk stratification are discussed.
Collapse
Affiliation(s)
- Fahad Alajmi
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Mehima Kang
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - James Dundas
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
- Department of Cardiology, North Tees and Hartlepool NHS Foundation Trust, Hardwick Rd, Hardwick, Stockton-on-Tees TS19 8PE, UK
| | - Alexander Haenel
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Jeremy Parker
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Philipp Blanke
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
| | - Fionn Coghlan
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - John King Khoo
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Abdulaziz A. Bin Zaid
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Amrit Singh
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Medical Sciences, 2176 Health Sciences Mall Block C217, Vancouver, BC V6T 2A1, Canada;
| | - Bobby Heydari
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Darwin Yeung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Thomas M. Roston
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Kevin Ong
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| |
Collapse
|
9
|
Kim YC, Kim K, Choe YH. Automatic calculation of myocardial perfusion reserve using deep learning with uncertainty quantification. Quant Imaging Med Surg 2023; 13:7936-7949. [PMID: 38106294 PMCID: PMC10722070 DOI: 10.21037/qims-23-840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 12/19/2023]
Abstract
Background Myocardial perfusion reserve index (MPRI) in magnetic resonance imaging (MRI) is an important indicator of ischemia, and its measurement typically involves manual procedures. The purposes of this study were to develop a fully automatic method for estimating the MPRI and to evaluate its performance. Methods The method consisted of segmenting the myocardium in dynamic contrast-enhanced (DCE) myocardial perfusion MRI data using Monte Carlo dropout U-Net, dividing the myocardium into segments based on landmark localization with machine learning, and estimating the MPRI after the calculation of the left ventricular and myocardial contrast upslopes. The proposed method was compared with a reference method, which involved manual adjustments of the myocardial contours and upslope ranges. Results In test subjects, MPRIs measured by the proposed technique correlated with those by the manual reference in segmental assessment [intraclass correlation coefficient (ICC) =0.75, 95% CI: 0.70-0.79, P<0.001]. The automatic and reference MPRI values showed a mean difference of -0.02 and 95% limits of agreement of (-0.86, 0.82). Conclusions The proposed automatic method is based on deep learning segmentation and machine learning landmark detection for MPRI measurements in DCE perfusion MRI. It holds the potential to efficiently and quantitatively assess myocardial ischemia without any user's interaction.
Collapse
Affiliation(s)
- Yoon-Chul Kim
- Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| | - Kyurae Kim
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Coleman JA, Ashkir Z, Raman B, Bueno-Orovio A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2023; 39:1979-1996. [PMID: 37358707 PMCID: PMC10589194 DOI: 10.1007/s10554-023-02894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovascular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric mutations, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruction. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodelling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Kosuge H, Hachiya S, Fujita Y, Hida S, Chikamori T. Potential of non-contrast stress T1 mapping for the assessment of myocardial injury in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2023; 25:53. [PMID: 37759307 PMCID: PMC10536753 DOI: 10.1186/s12968-023-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ischemia of the hypertrophied myocardium due to microvascular dysfunction is related to a worse prognosis in hypertrophic cardiomyopathy (HCM). Stress and rest T1 mapping without contrast agents can be used to assess myocardial blood flow. Herein, we evaluated the potential of non-contrast stress T1 mapping in assessing myocardial injury in patients with HCM. METHODS Forty-five consecutive subjects (31 HCM patients and 14 control subjects) underwent cardiac magnetic resonance (CMR) at 3T, including cine imaging, T1 mapping at rest and during adenosine triphosphate (ATP) stress, late gadolinium enhancement (LGE), and phase-contrast (PC) cine imaging of coronary sinus flow at rest and during stress to assess coronary flow reserve (CFR). PC cine imaging was performed on 25 subjects (17 patients with HCM and 8 control subjects). Native T1 values at rest and during stress were measured using the 16-segment model, and T1 reactivity was defined as the change in T1 values from rest to stress. RESULTS ATP stress induced a significant increase in native T1 values in both the HCM and control groups (HCM: p < 0.001, control: p = 0.002). T1 reactivity in the HCM group was significantly lower than that in the control group (4.2 ± 0.3% vs. 5.6 ± 0.5%, p = 0.044). On univariate analysis, T1 reactivity correlated with native T1 values at rest, left ventricular mass index, and CFR. Multiple linear regression analysis demonstrated that only CFR was independently correlated with T1 reactivity (β = 0.449; 95% confidence interval, 0.048-0.932; p = 0.032). Furthermore, segmental analysis showed decreased T1 reactivity in the hypertrophied myocardium and the non-hypertrophied myocardium with LGE in the HCM group. CONCLUSIONS T1 reactivity was lower in the hypertrophied myocardium and LGE-positive myocardium compared to non-injured myocardium. Non-contrast stress T1 mapping is a promising CMR method for assessing myocardial injury in patients with HCM. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shoko Hachiya
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yasuhiro Fujita
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Satoshi Hida
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Taishiro Chikamori
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
12
|
Joy G, Kelly CI, Webber M, Pierce I, Teh I, McGrath L, Velazquez P, Hughes RK, Kotwal H, Das A, Chan F, Bakalakos A, Lorenzini M, Savvatis K, Mohiddin SA, Macfarlane PW, Orini M, Manisty C, Kellman P, Davies RH, Lambiase PD, Nguyen C, Schneider JE, Tome M, Captur G, Dall’Armellina E, Moon JC, Lopes LR. Microstructural and Microvascular Phenotype of Sarcomere Mutation Carriers and Overt Hypertrophic Cardiomyopathy. Circulation 2023; 148:808-818. [PMID: 37463608 PMCID: PMC10473031 DOI: 10.1161/circulationaha.123.063835] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.
Collapse
Affiliation(s)
- George Joy
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Christopher I. Kelly
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK (C.I.L., I.T., A.D., J.E.S., E.D.)
| | - Matthew Webber
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- Medical Research Council Unit for Lifelong Health and Ageing (M.W., I.P., F.C., R.H.D., G.C.), University College London, UK
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, UK (M.W., F.C., G.C.)
| | - Iain Pierce
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- Medical Research Council Unit for Lifelong Health and Ageing (M.W., I.P., F.C., R.H.D., G.C.), University College London, UK
| | - Irvin Teh
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK (C.I.L., I.T., A.D., J.E.S., E.D.)
| | - Louise McGrath
- Imaging Department, Royal Brompton & Harefield Hospitals, London, UK (L.M.)
| | - Paula Velazquez
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Cardiology Clinical and Academic Group, St. Georges University of London and St. Georges University Hospitals NHS Foundation Trust, UK (P.V., M.T.)
| | - Rebecca K. Hughes
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Huafrin Kotwal
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
| | - Arka Das
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK (C.I.L., I.T., A.D., J.E.S., E.D.)
| | - Fiona Chan
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- Medical Research Council Unit for Lifelong Health and Ageing (M.W., I.P., F.C., R.H.D., G.C.), University College London, UK
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, UK (M.W., F.C., G.C.)
| | - Athanasios Bakalakos
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Massimiliano Lorenzini
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Konstantinos Savvatis
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- William Harvey Research Institute, Queen Mary University London, UK (K.S., S.A.M.)
| | - Saidi A. Mohiddin
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- William Harvey Research Institute, Queen Mary University London, UK (K.S., S.A.M.)
| | - Peter W. Macfarlane
- Electrocardiology Section, School of Health and Wellbeing, University of Glasgow, UK (P.W.M.)
| | - Michele Orini
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Charlotte Manisty
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD (P.K.)
| | - Rhodri H. Davies
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- Medical Research Council Unit for Lifelong Health and Ageing (M.W., I.P., F.C., R.H.D., G.C.), University College London, UK
| | - Pier D. Lambiase
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Christopher Nguyen
- Cardiovascular Innovation Research Centre, HVTI, Cleveland Clinic, OH (C.N.)
| | - Jurgen E. Schneider
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK (C.I.L., I.T., A.D., J.E.S., E.D.)
| | - Maite Tome
- Cardiology Clinical and Academic Group, St. Georges University of London and St. Georges University Hospitals NHS Foundation Trust, UK (P.V., M.T.)
| | - Gabriella Captur
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
- Medical Research Council Unit for Lifelong Health and Ageing (M.W., I.P., F.C., R.H.D., G.C.), University College London, UK
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, UK (M.W., F.C., G.C.)
| | - Erica Dall’Armellina
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK (C.I.L., I.T., A.D., J.E.S., E.D.)
| | - James C. Moon
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| | - Luis R. Lopes
- Barts Heart Centre, Barts Health NHS Trust, London, UK (G.J., I.P., P.V., R.K.H., H.K., A.B., M.L., K.S., S.A.M., M.O., C.M., R.H.D., P.D.L., J.C.M., L.R.L.)
- Institute of Cardiovascular Science (G.J.. M.W., I.P., R.K.H., F.C., A.B., M.L., K.S., M.O., C.M., R.H.D., P.D.L., G.C., J.C.M., L.R.L.), University College London, UK
| |
Collapse
|
13
|
Li XM, Jiang L, Min CY, Yan WF, Shen MT, Liu XJ, Guo YK, Yang ZG. Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance: Research Progress and Current Implementation. Curr Probl Cardiol 2023; 48:101665. [PMID: 36828047 DOI: 10.1016/j.cpcardiol.2023.101665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Cardiovascular diseases pose a significant health and economic burden worldwide, with coronary artery disease still recognized as a major problem. It is closely associated with hypertension, diabetes, obesity, smoking, lack of exercise, poor diet, and excessive alcohol consumption, which may lead to macro- and microvascular abnormalities in the heart. Coronary artery stenosis reduces the local supply of oxygen and nutrients to the myocardium and results in reduced levels of myocardial perfusion, which can lead to more severe conditions and irreversible damage to myocardial tissues. Therefore, accurate evaluation of myocardial perfusion abnormalities in patients with these risk factors is critical. As technology advances, magnetic resonance myocardial perfusion imaging has become more accurate at evaluating the myocardial microcirculation and has shown a powerful ability to detect myocardial ischemia. The purpose of this review is to summarize the principle, research progress of acquisition and analysis, and clinical implementation of cardiovascular magnetic resonance (CMR) myocardial perfusion imaging.
Collapse
Affiliation(s)
- Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Zhou W, Sin J, Yan AT, Wang H, Lu J, Li Y, Kim P, Patel AR, Ng MY. Qualitative and Quantitative Stress Perfusion Cardiac Magnetic Resonance in Clinical Practice: A Comprehensive Review. Diagnostics (Basel) 2023; 13:524. [PMID: 36766629 PMCID: PMC9914769 DOI: 10.3390/diagnostics13030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Stress cardiovascular magnetic resonance (CMR) imaging is a well-validated non-invasive stress test to diagnose significant coronary artery disease (CAD), with higher diagnostic accuracy than other common functional imaging modalities. One-stop assessment of myocardial ischemia, cardiac function, and myocardial viability qualitatively and quantitatively has been proven to be a cost-effective method in clinical practice for CAD evaluation. Beyond diagnosis, stress CMR also provides prognostic information and guides coronary revascularisation. In addition to CAD, there is a large body of literature demonstrating CMR's diagnostic performance and prognostic value in other common cardiovascular diseases (CVDs), especially coronary microvascular dysfunction (CMD). This review focuses on the clinical applications of stress CMR, including stress CMR scanning methods, practical interpretation of stress CMR images, and clinical utility of stress CMR in a setting of CVDs with possible myocardial ischemia.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Jason Sin
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew T. Yan
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | - Jing Lu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Paul Kim
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Amit R. Patel
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ming-Yen Ng
- Department of Medical Imaging, HKU-Shenzhen Hospital, Shenzhen 518009, China
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Pelliccia F, Cecchi F, Olivotto I, Camici PG. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. J Clin Med 2022; 11:jcm11216560. [PMID: 36362787 PMCID: PMC9658510 DOI: 10.3390/jcm11216560] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Myocardial ischemia is an established pathophysiological feature of hypertrophic cardiomyopathy (HCM) that impacts various clinical features, including heart failure (HF) and sudden cardiac death (SCD). The major determinant of myocardial ischemia in HCM is coronary microvascular dysfunction (CMD) in the absence of epicardial coronary artery abnormalities. Despite the impossibility to directly visualize microcirculation in vivo, a multimodality approach can allow a detailed assessment of microvascular dysfunction and ischemia. Accordingly, the non-invasive assessment of CMD using transthoracic Doppler echocardiography, positron emission tomography, and cardiac magnetic resonance should now be considered mandatory in any HCM patient. Noteworthy, a complete diagnostic work-up for myocardial ischemia plays a major role in the approach of the patients with HCM and their risk stratification. Chronic and recurrent episodes of ischemia can contribute to fibrosis, culminating in LV remodeling and HF. Ischemia can potentially constitute an arrhythmic substrate and might prove to have an added value in risk stratification for SCD. Accordingly, strategies for the early diagnosis of CMD should now be considered an important challenge for the scientific community.
Collapse
Affiliation(s)
- Francesco Pelliccia
- Department of Cardiovascular Sciences, Sapienza University, 00166 Rome, Italy
- Correspondence:
| | - Franco Cecchi
- IRCCS Istituto Auxologico Italiano, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, 20100 Milan, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital and Careggi University Hospital, 50123 Florence, Italy
| | - Paolo G. Camici
- San Raffaele Hospital, Vita-Salute University, 20121 Milan, Italy
| |
Collapse
|
16
|
Roldan P, Ravi S, Hodovan J, Belcik JT, Heitner SB, Masri A, Lindner JR. Myocardial contrast echocardiography assessment of perfusion abnormalities in hypertrophic cardiomyopathy. Cardiovasc Ultrasound 2022; 20:23. [PMID: 36117179 PMCID: PMC9484161 DOI: 10.1186/s12947-022-00293-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Perfusion defects during stress can occur in hypertrophic cardiomyopathy (HCM) from either structural or functional abnormalities of the coronary microcirculation. In this study, vasodilator stress myocardial contrast echocardiography (MCE) was used to quantify and spatially characterize hyperemic myocardial blood flow (MBF) deficits in HCM. Methods Regadenoson stress MCE was performed in patients with septal-variant HCM (n = 17) and healthy control subjects (n = 15). The presence and spatial distribution (transmural diffuse, patchy, subendocardial) of perfusion defects was determined by semiquantitative analysis. Kinetic analysis of time-intensity data was used to quantify MBF, microvascular flux rate (β), and microvascular blood volume. In patients undergoing septal myectomy (n = 3), MCE was repeated > 1 years after surgery. Results In HCM subjects, perfusion defects during stress occurred in the septum in 80%, and in non-hypertrophied regions in 40%. The majority of septal defects (83%) were patchy or subendocardial, while 67% of non-hypertrophied defects were transmural and diffuse. On quantitative analysis, hyperemic MBF was approximately 50% lower (p < 0.001) in the hypertrophied and non-hypertrophied regions of those with HCM compared to controls, largely based on an inability to augment β, although hypertrophic regions also had blood volume deficits. There was no correlation between hyperemic MBF and either percent fibrosis on magnetic resonance imaging or outflow gradient, yet those with higher degrees of fibrosis (≥ 5%) or severe gradients all had low septal MBF during regadenoson. Substantial improvement in hyperemic MBF was observed in two of the three subjects undergoing myectomy, both of whom had severe pre-surgical outflow gradients at rest. Conclusion Perfusion defects on vasodilator MCE are common in HCM, particularly in those with extensive fibrosis, but have a different spatial pattern for the hypertrophied and non-hypertrophied segments, likely reflecting different contributions of functional and structural abnormalities. Improvement in hyperemic perfusion is possible in those undergoing septal myectomy to relieve obstruction. Trial registration ClinicalTrials.gov NCT02560467. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12947-022-00293-2.
Collapse
Affiliation(s)
- Paola Roldan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sriram Ravi
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Stephen B Heitner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ahmad Masri
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA. .,Division of Cardiovascular Medicine, University of Virginia Medical Center, 415 Lane Rd, CVRC Box 801394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
17
|
Wang J, Gao Y, Yang ZG, Guo YK, Jiang L, Shi R, Xu HY, Huang S, Li Y. Quantitative assessment of left ventricular myocardial involvement in patients with connective tissue disease: a 3.0T contrast-enhanced cardiovascular magnetic resonance study. Int J Cardiovasc Imaging 2022; 38:1545-1554. [PMID: 35284973 PMCID: PMC11143006 DOI: 10.1007/s10554-022-02539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate left ventricular (LV) myocardial involvement in connective tissue disease (CTD) patients using multiparemetric imaging derived from cardiovascular magnetic resonance (CMR). CMR was performed on 146 CTD patients (comprising of 74 with idiopathic inflammatory myopathy (IIM) and 72 with non-IIM) and 72 healthy controls and included measures of LV global strains [including peak strain (PS), peak systolic (PSSR) and diastolic strain rate (PDSR)], myocardial perfusion [including upslope, max signal intensity (MaxSI), and time to maximum signal intensity (TTM)], and late gadolinium enhancement (LGE) parameters. Univariable and multivariable linear regression analyses were performed to determine the association between LV deformation and microvascular perfusion, as well as LGE. Our results indicated that CTD patients had decreased global longitudinal PS (GLPS), PSSR, PDSR, and myocardial perfusion (all p < 0.017) compared with normal controls. Non-IIM patients exhibited lower LV global strain and longer TTM than IIM patients. The presence of LGE was independently associated with global radial PS (GRPS: β = - 0.165, p = 0.011) and global circumferential PS (GCPS: β = - 0.122, p = 0.022). TTM was independently correlated with GLPS (β = - 0.156, p = 0.027). GLPS was the best indicator for differentiating CTD patients from normal controls (area under curve of 0.78). This study indicated that CTD patients showed impaired LV global myocardial deformation and microvascular perfusion, and presence of LGE. Cardiac involvement might be more severe in non-IIM patients than in IIM patients. Impaired microvascular perfusion and the presence of LGE were independently associated with LV global deformation.
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, Gilliland Y, Lester SJ, Maldonado Y, Mohiddin S, Nieman K, Sperry BW, Woo A. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2022; 35:533-569. [PMID: 35659037 DOI: 10.1016/j.echo.2022.03.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases. Symptoms can be related to a range of pathophysiologic mechanisms including left ventricular outflow tract obstruction with or without significant mitral regurgitation, diastolic dysfunction with heart failure with preserved and heart failure with reduced ejection fraction, autonomic dysfunction, ischemia, and arrhythmias. Appropriate understanding and utilization of multimodality imaging is fundamental to accurate diagnosis as well as longitudinal care of patients with HCM. Resting and stress imaging provide comprehensive and complementary information to help clarify mechanism(s) responsible for symptoms such that appropriate and timely treatment strategies may be implemented. Advanced imaging is relied upon to guide certain treatment options including septal reduction therapy and mitral valve repair. Using both clinical and imaging parameters, enhanced algorithms for sudden cardiac death risk stratification facilitate selection of HCM patients most likely to benefit from implantable cardioverter-defibrillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Saidi Mohiddin
- Inherited/Acquired Myocardial Diseases, Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Koen Nieman
- Cardiovascular Medicine and Radiology (CV Imaging), Stanford University Medical Center, CA
| | - Brett W Sperry
- Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Anna Woo
- Toronto General Hospital, Toronto, Canada
| |
Collapse
|
19
|
Sivalokanathan S. The Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Hypertrophic Cardiomyopathy. Diagnostics (Basel) 2022; 12:diagnostics12020314. [PMID: 35204405 PMCID: PMC8871211 DOI: 10.3390/diagnostics12020314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder, affecting 1 out of 500 adults globally. It is a widely heterogeneous disorder characterized by a range of phenotypic expressions, and is most often identified by non-invasive imaging that includes echocardiography and cardiovascular magnetic resonance imaging (CMR). Within the last two decades, cardiac magnetic resonance imaging (MRI) has emerged as the defining tool for the characterization and prognostication of cardiomyopathies. With a higher image quality, spatial resolution, and the identification of morphological variants of HCM, CMR has become the gold standard imaging modality in the assessment of HCM. Moreover, it has been crucial in its management, as well as adding prognostic information that clinical history nor other imaging modalities may not provide. This literature review addresses the role and current applications of CMR, its capacity in evaluating HCM, and its limitations.
Collapse
Affiliation(s)
- Sanjay Sivalokanathan
- Internal Medicine, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA 19107, USA;
- Cardiovascular Clinical Academic Group, St. George’s University of London and St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
| |
Collapse
|
20
|
Lee HJ, Kim J, Chang SA, Kim YJ, Kim HK, Lee SC. Major Clinical Issues in Hypertrophic Cardiomyopathy. Korean Circ J 2022; 52:563-575. [PMID: 35929051 PMCID: PMC9353251 DOI: 10.4070/kcj.2022.0159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
By actively implementing contemporary management strategies in hypertrophic cardiomyopathy, morbidity and mortality can be substantially reduced. In this review, we discuss the pathophysiology and management of the major clinical issues in hypertrophic cardiomyopathy, including sudden cardiac death, atrial fibrillation and thromboembolism, dynamic left ventricular outflow tract obstruction, and heart failure progression. Although echocardiography and cardiac magnetic resonance imaging currently play an essential and complementary role in the management of hypertrophic cardiomyopathy, further studies are needed to establish how developing techniques such as myocardial deformation and late gadolinium enhancement can provide better risk stratification and guide treatment. Hypertrophic cardiomyopathy (HCM) is one of the most common inheritable cardiomyopathies. Contemporary management strategies, including the advent of implantable cardioverter-defibrillators and effective anticoagulation, have substantially improved the clinical course of HCM patients; however, the disease burden of HCM is still high in Korea. Sudden cardiac death (SCD), atrial fibrillation and thromboembolic risk, dynamic left ventricular outflow tract (LVOT) obstruction, and heart failure (HF) progression remain important issues in HCM. SCD in HCM can be effectively prevented with implantable cardioverter-defibrillators. However, appropriate patient selection is important for primary prevention, and the 5-year SCD risk score and the presence of major SCD risk factors should be considered. Anticoagulation should be initiated in all HCM patients with atrial fibrillation regardless of the CHA2DS2-VASc score, and non-vitamin K antagonist oral anticoagulants are the first option. Symptomatic dynamic LVOT obstruction is first treated medically with negative inotropes, and if symptoms persist, septal reduction therapy is considered. The recently approved myosin inhibitor mavacamten is promising. HF in HCM is usually related to diastolic dysfunction, while about 5% of HCM patients show reduced left ventricular ejection fraction <50%, also referred to as “end-stage” HCM. Myocardial fibrosis plays an important role in the progression to advanced HF in patients with HCM. Patients who do not respond to guideline-directed medical therapy can be considered for heart transplantation. The development of imaging techniques, such as myocardial deformation on echocardiography and late gadolinium enhancement on cardiac magnetic resonance, can provide better risk evaluation and decision-making for management strategies in HCM.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jihoon Kim
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-A Chang
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Jin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyung-Kwan Kim
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang Chol Lee
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Raphael CE, Mitchell F, Kanaganayagam GS, Liew AC, Di Pietro E, Vieira MS, Kanapeckaite L, Newsome S, Gregson J, Owen R, Hsu LY, Vassiliou V, Cooper R, Mrcp AA, Ismail TF, Wong B, Sun K, Gatehouse P, Firmin D, Cook S, Frenneaux M, Arai A, O'Hanlon R, Pennell DJ, Prasad SK. Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation. J Cardiovasc Magn Reson 2021; 23:26. [PMID: 33685501 PMCID: PMC7941878 DOI: 10.1186/s12968-021-00720-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/10/2020] [Accepted: 01/31/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Heart failure (HF) in hypertrophic cardiomyopathy (HCM) is associated with high morbidity and mortality. Predictors of HF, in particular the role of myocardial fibrosis and microvascular ischemia remain unclear. We assessed the predictive value of cardiovascular magnetic resonance (CMR) for development of HF in HCM in an observational cohort study. METHODS Serial patients with HCM underwent CMR, including adenosine first-pass perfusion, left atrial (LA) and left ventricular (LV) volumes indexed to body surface area (i) and late gadolinium enhancement (%LGE- as a % of total myocardial mass). We used a composite endpoint of HF death, cardiac transplantation, and progression to NYHA class III/IV. RESULTS A total of 543 patients with HCM underwent CMR, of whom 94 met the composite endpoint at baseline. The remaining 449 patients were followed for a median of 5.6 years. Thirty nine patients (8.7%) reached the composite endpoint of HF death (n = 7), cardiac transplantation (n = 2) and progression to NYHA class III/IV (n = 20). The annual incidence of HF was 2.0 per 100 person-years, 95% CI (1.6-2.6). Age, previous non-sustained ventricular tachycardia, LV end-systolic volume indexed to body surface area (LVESVI), LA volume index ; LV ejection fraction, %LGE and presence of mitral regurgitation were significant univariable predictors of HF, with LVESVI (Hazard ratio (HR) 1.44, 95% confidence interval (95% CI) 1.16-1.78, p = 0.001), %LGE per 10% (HR 1.44, 95%CI 1.14-1.82, p = 0.002) age (HR 1.37, 95% CI 1.06-1.77, p = 0.02) and mitral regurgitation (HR 2.6, p = 0.02) remaining independently predictive on multivariable analysis. The presence or extent of inducible perfusion defect assessed using a visual score did not predict outcome (p = 0.16, p = 0.27 respectively). DISCUSSION The annual incidence of HF in a contemporary ambulatory HCM population undergoing CMR is low. Myocardial fibrosis and LVESVI are strongly predictive of future HF, however CMR visual assessment of myocardial perfusion was not.
Collapse
Affiliation(s)
- Claire E Raphael
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.
- Department of CMR, Royal Brompton Hospital, Sydney Street, Sydney, SW3 6NP, UK.
| | - Frances Mitchell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | - Alphonsus C Liew
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Elisa Di Pietro
- Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Miguel Silva Vieira
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Lina Kanapeckaite
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Simon Newsome
- London School of Hygiene & Tropical Medicine, London, UK
| | - John Gregson
- London School of Hygiene & Tropical Medicine, London, UK
| | - Ruth Owen
- London School of Hygiene & Tropical Medicine, London, UK
| | - Li-Yueh Hsu
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vassilis Vassiliou
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Robert Cooper
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Aamir Ali Mrcp
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Tevfik F Ismail
- King's College London & Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Brandon Wong
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Kristi Sun
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Peter Gatehouse
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - David Firmin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Stuart Cook
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
- National Heart Center, Singapore, Singapore
| | | | - Andrew Arai
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Dudley J Pennell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Sanjay K Prasad
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| |
Collapse
|