1
|
Ma HY, Cai YH, Zhong JW, Chen J, Wang Z, Lin CY, Wang QQ, Liu HC. The effect of remimazolam-based total intravenous anesthesia versus sevoflurane-based inhalation anesthesia on emergence delirium in children undergoing tonsillectomy and adenoidectomy: study protocol for a prospective randomized controlled trial. Front Pharmacol 2024; 15:1373006. [PMID: 38983921 PMCID: PMC11231196 DOI: 10.3389/fphar.2024.1373006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Background: Remimazolam, a new ultrashort-acting benzodiazepine, is becoming increasingly applied in general anesthesia. This study is designed to investigate the effect of remimazolam-based total intravenous anesthesia and sevoflurane-based inhalation anesthesia on emergence delirium in pediatric tonsillectomy and adenoidectomy. Methods and analysis: This is a monocentric, prospective, randomized, double-blind clinical trial. A total of 90 pediatric patients will be randomized to receive remimazolam-based total intravenous anesthesia (remimazolam group, n = 45) or sevoflurane-based inhalation anesthesia (sevoflurane group, n = 45). The primary outcome will be the incidence of emergence delirium, which will be evaluated using the Pediatric Anesthesia Emergence Delirium (PAED) scale. The secondary outcomes include the extubation time, recovery time, behavior change using the post-hospitalization behavior questionnaire for ambulatory surgery (PHBQ-AS), and adverse events. Ethics and dissemination: This study has been approved by the Institutional Review Board (IRB) of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (2023-K-262-02). Clinical trial registration: ClinicalTrials.gov, identifier NCT06214117.
Collapse
Affiliation(s)
- Hong-Yu Ma
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Hang Cai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - John Wei Zhong
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jia Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao-Yi Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiao-Qiao Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua-Cheng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Welzel T, Zapf B, Klotsche J, Satirer Ö, Benseler SM, Kuemmerle-Deschner JB. Optimized Treatment of Interleukin (IL-1)-Mediated Autoinflammatory Diseases: Impact of Disease Activity-Based Treatment Adjustments. J Clin Med 2024; 13:2319. [PMID: 38673592 PMCID: PMC11050771 DOI: 10.3390/jcm13082319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Effective control of disease activity in Interleukin-1 autoinflammatory diseases (IL-1 AID) is crucial to prevent damage. The aim was to longitudinally analyze the impact of protocolized disease activity-based treatment adjustments in a real-life cohort. Methods: A single-center study of consecutive children with IL-1 AID followed between January 2016 and December 2019 was performed. Demographics, phenotypes, genotypes, inflammatory markers, physician (PGA), and patient/parent (PPGA) global assessment were captured. Disease activity and treatment changes were assessed. The impact of distinct parameters on disease activity trajectories was analyzed. Results: A total of 56 children were included, median follow-up was 2.1 years reflecting 361 visits. Familial Mediterranean Fever was the most common IL-1 AID. At the first visit, 68% of the patients had moderate/severe disease activity. Disease activity-based treatment adjustments were required in 28/56 children (50%). At last follow-up, 79% had a well-controlled disease. Both PGA and PPGA decreased significantly over time (p < 0.001; p < 0.017, respectively), however, both differed statistically at last visit (p < 0.001). Only PGA showed a significant estimated mean decrease across all IL-1 AID over time. Conclusions: Disease activity-based treatment adjustments can effectively refine treat-to-target strategies, enable personalized precision health approaches, and improve outcomes in children with IL-1 AID.
Collapse
Affiliation(s)
- Tatjana Welzel
- Pediatric Rheumatology, University Children’s Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Pediatric Research Centre, University Children’s Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Division of Pediatric Rheumatology, Department of Pediatrics, autoinflammatory reference centre Tuebingen, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Beate Zapf
- Division of Pediatric Rheumatology, Department of Pediatrics, autoinflammatory reference centre Tuebingen, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Jens Klotsche
- German Rheumatism Research Centre Berlin, 10117 Berlin, Germany
| | - Özlem Satirer
- Division of Pediatric Rheumatology, Department of Pediatrics, autoinflammatory reference centre Tuebingen, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Susanne M. Benseler
- Pediatric Rheumatology, Department of Paediatrics, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Children’s Health Ireland (CHI), D01 R5P3 Dublin, Ireland
| | - Jasmin B. Kuemmerle-Deschner
- Division of Pediatric Rheumatology, Department of Pediatrics, autoinflammatory reference centre Tuebingen, University Hospital Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
3
|
Mitsis A, Kyriakou M, Sokratous S, Karmioti G, Drakomathioulakis M, Myrianthefs M, Ziakas A, Tzikas S, Kassimis G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024; 12:701. [PMID: 38540314 PMCID: PMC10968587 DOI: 10.3390/biomedicines12030701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 11/11/2024] Open
Abstract
The role of inflammation in the pathophysiology of acute myocardial infarction (AMI) is well established. In recognizing inflammation's pivotal role in AMI, this manuscript systematically traces the historical studies spanning from early attempts to the present landscape. Several anti-inflammatory trials targeting inflammation in post-AMI have been performed, and this review includes the key trials, as well as examines their designs, patient demographics, and primary outcomes. Efficacies and challenges are analyzed, thereby shedding light on the translational implications of trial outcomes. This article also discusses emerging trends, ongoing research, and potential future directions in the field. Practical applications and implications for clinical practice are considered by providing a holistic view of the evolving landscape of anti-inflammatory interventions in the context of AMI.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|