1
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Ren J, Yang T, Liu H, Ma P, Zhou M, Li J, Li T, Sun J, He W, Xu L, Dai SS, Liu YW. Metabotropic glutamate receptor 5 promotes blood-brain barrier recovery after traumatic brain injury. Exp Neurol 2024; 374:114691. [PMID: 38224942 DOI: 10.1016/j.expneurol.2024.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Blood-brain barrier (BBB) impairment and glutamate release are two pathophysiological features of traumatic brain injury (TBI), contributing to secondary brain damage and neuroinflammation. However, our knowledge of BBB integrity damage and dysfunction are still limited due to the diverse and fluctuating expression of glutamate receptors after trauma. Here, we confirmed the downregulation of metabotropic glutamate receptor 5 (mGluR5) on microvascular endothelial cell within the acute phase of TBI, and the recovered mGluR5 levels on BBB was positively associated with blood perfusion and neurological recovery. In whole body mGluR5-knockout mice, BBB dysfunction and neurological deficiency were exacerbated after TBI compared with wild type mice. In terms of mechanism, the amino acid sequence 201-259 of cytoskeletal protein Alpha-actinin-1 (ACTN1) interacted with mGluR5, facilitating mGluR5 translocation from cytoplasmic compartment to plasma membrane in endothelial cells. Activation of plasma membrane mGluR5 triggers the PLC/PKCμ/c-Jun signaling pathway, leading to increased expression of the tight junction-actin cytoskeleton connecting protein zonula occludens-1 (ZO-1). Our findings uncover a novel mechanism mediated by membrane and cytoplasmic mGluR5 in endothelial cell integrity maintenance and repair, providing the potential therapeutic target for TBI treatment targeting at mGluR5 and mGluR5/ACTN1 complex in BBB.
Collapse
Affiliation(s)
- Jiakui Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Pengjiao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jiabo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jianbin Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Yang M, Vanderwert E, Kimchi ET, Staveley-O’Carroll KF, Li G. The Important Roles of Natural Killer Cells in Liver Fibrosis. Biomedicines 2023; 11:1391. [PMID: 37239062 PMCID: PMC10216436 DOI: 10.3390/biomedicines11051391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Ethan Vanderwert
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Chisari M, Barraco M, Bucolo C, Ciranna L, Sortino MA. Purinergic ionotropic P2X7 and metabotropic glutamate mGlu 5 receptors crosstalk influences pro-inflammatory conditions in microglia. Eur J Pharmacol 2022; 938:175389. [PMID: 36435235 DOI: 10.1016/j.ejphar.2022.175389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Microglia represent the resident immune system in the brain. They mediate neuroinflammatory processes and have been described as important regulators of homeostasis in the central nervous system (CNS). Among several players and mechanisms contributing to microglial function in inflammation, ATP and glutamate have been shown to be involved in microgliosis. In this study, we focused on receptor subtypes that respond to these neurotransmitters, purinergic ionotropic P2X7 receptor and metabotropic glutamate mGlu5 receptor. We found that both receptors are functionally expressed in a murine microglia cell line, BV2 cells, and we performed patch-clamp experiments to measure purinergic ionotropic P2X7 receptor ion flux in control condition and after metabotropic glutamate mGlu5 receptor activation. The selective purinergic ionotropic P2X7 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP, 100 μM), elicited a robust current that was prevented by the selective purinergic ionotropic P2X7 receptor antagonist A438079 (10 μM). When BV2 cells were acutely stimulated with the selective metabotropic glutamate mGlu5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 200 μM), purinergic ionotropic P2X7 receptor current was increased. This positive modulation was prevented by the selective metabotropic glutamate mGlu5 receptor antagonist 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP, 1 μM). Moreover, nitric oxide synthesis elicited by purinergic ionotropic P2X7 receptor activation was enhanced by metabotropic glutamate mGlu5 receptor co-stimulation. Taken together, our results suggest an important crosstalk between ATP and glutamate in inflammation. Pro-inflammatory effects mediated by purinergic ionotropic P2X7 receptor might be exacerbated by simultaneous exposure of microglia to ATP and glutamate, suggesting new pharmacological targets to modulate neuroinflammation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy.
| | - Michele Barraco
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy; PhD Program in Neuroscience, University of Catania, Italy
| | - Claudio Bucolo
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| | - Lucia Ciranna
- Dept. of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Maria Angela Sortino
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| |
Collapse
|
6
|
The Impact of the Antipsychotic Medication Chlorpromazine on Cytotoxicity through Ca 2+ Signaling Pathway in Glial Cell Models. Neurotox Res 2022; 40:791-802. [PMID: 35438391 DOI: 10.1007/s12640-022-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Chlorpromazine, an antipsychotic medication, is conventionally applied to cope with the psychotic disorder such as schizophrenia. In cellular studies, chlorpromazine exerts many different actions through calcium ion (Ca2+) signaling, but the underlying pathways are elusive. This study explored the effect of chlorpromazine on viability, Ca2+ signaling pathway and their relationship in glial cell models (GBM 8401 human glioblastoma cell line and Gibco® Human Astrocyte (GHA)). First, chlorpromazine between 10 and 40 μM induced cytotoxicity in GBM 8401 cells but not in GHA cells. Second, in terms of Ca2+ homeostasis, chlorpromazine (10-30 μM) increased intracellular Ca2+ concentrations ([Ca2+]i) rises in GBM 8401 cells but not in GHA cells. Ca2+ removal reduced the signal by approximately 55%. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced chlorpromazine (10-40 μM)-induced cytotoxicity in GBM 8401 cells. Third, in Ca2+-containing medium of GBM 8401 cells, chlorpromazine-induced Ca2+ entry was inhibited by the modulators of store-operated Ca2+ channel (2-APB and SKF96365). Lastly, in Ca2+-free medium of GBM 8401 cells, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin completely inhibited chlorpromazine-increased [Ca2+]i rises. Conversely, treatment with chlorpromazine abolished thapsigargin-increased [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished chlorpromazine-increased [Ca2+]i rises. Together, in GBM 8401 cells but not in GHA cells, chlorpromazine increased [Ca2+]i rises by Ca2+ influx via store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. Moreover, the Ca2+ chelator BAPTA-AM inhibited cytotoxicity in chlorpromazine-treated GBM 8401 cells. Therefore, Ca2+ signaling was involved in chlorpromazine-induced cytotoxicity in GBM 8401 cells.
Collapse
|
7
|
Khan MS, Buzdar SA, Hussain R, Afzal G, Jabeen G, Javid MA, Iqbal R, Iqbal Z, Mudassir KB, Saeed S, Rauf A, Ahmad HI. Hematobiochemical, Oxidative Stress, and Histopathological Mediated Toxicity Induced by Nickel Ferrite (NiFe 2O 4) Nanoparticles in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5066167. [PMID: 35308168 PMCID: PMC8933065 DOI: 10.1155/2022/5066167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.
Collapse
Affiliation(s)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Arshad Javid
- Department of Basic Sciences, University of Engineering and Technology, Taxila, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Khola Bint Mudassir
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-Anbar KPK, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells 2022; 11:cells11040691. [PMID: 35203338 PMCID: PMC8870609 DOI: 10.3390/cells11040691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Proinflammatory markers were found in brains of Parkinson’s disease (PD) patients. After years of L-Dopa symptomatic treatment, most PD patients develop dyskinesias. The relationship between inflammation and L-Dopa-induced dyskinesias (LID) is still unclear. We previously reported that MPEP (a metabotropic glutamate receptor 5 antagonist) reduced the development of LID in de novo MPTP-lesioned monkeys. We thus investigated if MPEP reduced the brain inflammatory response in these MPTP-lesioned monkeys and the relationship to LID. The panmacrophage/microglia marker Iba1, the phagocytosis-related receptor CD68, and the astroglial protein GFAP were measured by Western blots. The L-Dopa-treated dyskinetic MPTP monkeys had increased Iba1 content in the putamen, substantia nigra, and globus pallidus, which was prevented by MPEP cotreatment; similar findings were observed for CD68 contents in the putamen and globus pallidus. There was a strong positive correlation between dyskinesia scores and microglial markers in these regions. GFAP contents were elevated in MPTP + L-Dopa-treated monkeys among these brain regions and prevented by MPEP in the putamen and subthalamic nucleus. In conclusion, these results showed increased inflammatory markers in the basal ganglia associated with LID and revealed that MPEP inhibition of glutamate activity reduced LID and levels of inflammatory markers.
Collapse
|
9
|
Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer's disease mediated by gut microbiota. Ageing Res Rev 2021; 68:101317. [PMID: 33711509 DOI: 10.1016/j.arr.2021.101317] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have demonstrated the close relationship between gut microbiota and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal microbiota transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Xuan Song
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Bhardwaj A, Bhardwaj R, Sharma S, Sharma SK, Dhawan DK, Kaur T. AMPA induced cognitive impairment in rats: Establishing the role of endoplasmic reticulum stress inhibitor, 4-PBA. J Neurosci Res 2021; 99:2573-2591. [PMID: 34197000 DOI: 10.1002/jnr.24859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/05/2020] [Accepted: 05/03/2021] [Indexed: 11/09/2022]
Abstract
Glutamate excitotoxicity and endoplasmic reticulum (ER) recently have been found to be instrumental in the pathogenesis of various neurodegenerative diseases. However, the paucity of literature deciphering the inter-linkage among glutamate receptors, behavioral alterations, and ER demands thorough exploration. Reckoning the aforesaid concerns, a prospective study was outlined to delineate the influence of ER stress inhibition via 4-phenylbutyric acid (PBA) on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excitotoxicity-induced behavioral aspects and possible ER stress-glutamate linkage. Male SD rats were randomly divided into four groups namely sham (surgical control+vehicle, group 1), AMPA-induced excitotoxic group 2 receive a single intra-hippocampal injection of 10 mM AMPA, group 3 received AMPA along with PBA (i.p, 100 mg/kg body weight) for 15 days, and group 4 received PBA alone. Behavioral analyses were performed prior to the sacrifice of animals and hippocampus was extracted thereafter for further analysis. AMPA-induced excitotoxicity exhibited significant impairment of locomotion as well as cognitive functions. The levels of neurotransmitters such as dopamine, homo vanillic acid (HVA), norepinephrine, and serotonin were reduced accompanied by reduced expression of GLUR1 and GLUR4 (glutamate receptor) as well as loss of neurons in different layers of hippocampus. ER stress markers were upregulated upon AMPA excitotoxicity. However, chemical chaperone PBA supplementation remarkably mitigated the behavioral alterations along with expression of glutamate and ER stress intermediates/markers in AMPA excitotoxic animals. Therefore, the present exploration convincingly emphasizes the significance of ER stress and its inhibition via PBA in combating cognitive impairment as well as improving locomotion in excitotoxic animals.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh, India
| | | | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Gonzalez-Lozano MA, Wortel J, van der Loo RJ, van Weering JRT, Smit AB, Li KW. Reduced mGluR5 Activity Modulates Mitochondrial Function. Cells 2021; 10:cells10061375. [PMID: 34199502 PMCID: PMC8228325 DOI: 10.3390/cells10061375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is an essential modulator of synaptic plasticity, learning and memory; whereas in pathological conditions, it is an acknowledged therapeutic target that has been implicated in multiple brain disorders. Despite robust pre-clinical data, mGluR5 antagonists failed in several clinical trials, highlighting the need for a better understanding of the mechanisms underlying mGluR5 function. In this study, we dissected the molecular synaptic modulation mediated by mGluR5 using genetic and pharmacological mouse models to chronically and acutely reduce mGluR5 activity. We found that next to dysregulation of synaptic proteins, the major regulation in protein expression in both models concerned specific processes in mitochondria, such as oxidative phosphorylation. Second, we observed morphological alterations in shape and area of specifically postsynaptic mitochondria in mGluR5 KO synapses using electron microscopy. Third, computational and biochemical assays suggested an increase of mitochondrial function in neurons, with increased level of NADP/H and oxidative damage in mGluR5 KO. Altogether, our observations provide diverse lines of evidence of the modulation of synaptic mitochondrial function by mGluR5. This connection suggests a role for mGluR5 as a mediator between synaptic activity and mitochondrial function, a finding which might be relevant for the improvement of the clinical potential of mGluR5.
Collapse
Affiliation(s)
- Miguel A. Gonzalez-Lozano
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| | - Joke Wortel
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
| | - Rolinka J. van der Loo
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Jan R. T. van Weering
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
- Center for Neurogenomics and Cognitive Research, Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 Amsterdam, The Netherlands
| | - August B. Smit
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Ka Wan Li
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| |
Collapse
|
12
|
González-Sanmiguel J, Schuh CMAP, Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells 2020; 9:E2476. [PMID: 33203002 PMCID: PMC7697492 DOI: 10.3390/cells9112476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Creutzfeldt-Jakob disease (CJD) are brain conditions affecting millions of people worldwide. These diseases are associated with the presence of amyloid-β (Aβ), alpha synuclein (α-Syn) and prion protein (PrP) depositions in the brain, respectively, which lead to synaptic disconnection and subsequent progressive neuronal death. Although considerable progress has been made in elucidating the pathogenesis of these diseases, the specific mechanisms of their origins remain largely unknown. A body of research suggests a potential association between host microbiota, neuroinflammation and dementia, either directly due to bacterial brain invasion because of barrier leakage and production of toxins and inflammation, or indirectly by modulating the immune response. In the present review, we focus on the emerging topics of neuroinflammation and the association between components of the human microbiota and the deposition of Aβ, α-Syn and PrP in the brain. Special focus is given to gut and oral bacteria and biofilms and to the potential mechanisms associating microbiome dysbiosis and toxin production with neurodegeneration. The roles of neuroinflammation, protein misfolding and cellular mediators in membrane damage and increased permeability are also discussed.
Collapse
Affiliation(s)
| | - Christina M. A. P. Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Carola Muñoz-Montesino
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
| | - Pamina Contreras-Kallens
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Luis G. Aguayo
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepción, Concepción 4070386, Chile
| | - Sebastian Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
13
|
Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today 2020; 25:1074-1085. [PMID: 32320851 DOI: 10.1016/j.drudis.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Microglia are an essential component of the central nervous system (CNS) and are involved in the primary response to microorganisms, neuroinflammation, homeostasis, and tissue regeneration, as well as contributing to the pathogenesis of neurodegenerative diseases. Research has shown that microglial diversity, multifunctionality, and their relationship with glutamate are crucial to determining their roles in these diseases. In this review, we focus on recent progress in determining microglial characteristics and the role of glutamate and its receptors in microglia regulation, which could be a novel therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Dan Wang
- Department of Ophthalmology, the First Hospital of Jilin University, Changchun, China.
| | - Bo Zhang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Zhulin Zhou
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
A Fragment of Apolipoprotein E4 Leads to the Downregulation of a CXorf56 Homologue, a Novel ER-Associated Protein, and Activation of BV2 Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5123565. [PMID: 31198491 PMCID: PMC6526552 DOI: 10.1155/2019/5123565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Despite the fact that harboring the apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD), the exact mechanism by which apoE4 contributes to disease progression remains unknown. Recently, we demonstrated that a 151 amino-terminal fragment of apoE4 (nApoE41-151) localizes within the nucleus of microglia in the human AD brain, suggesting a potential role in gene expression. In the present study, we investigated this possibility utilizing BV2 microglia cells treated exogenously with nApoE41-151. The results indicated that nApoE41-151 leads to morphological activation of microglia cells through, at least in part, the downregulation of a novel ER-associated protein, CXorf56. Moreover, treatment of BV2 cells with nApoE41-151 resulted in a 68-fold increase in the expression of the inflammatory cytokine, TNFα, a key trigger of microglia activation. In this regard, we also observed a specific binding interaction of nApoE41-151 with the TNFα promoter region. Collectively, these data identify a novel gene-regulatory pathway involving CXorf56 that may link apoE4 to microglia activation and inflammation associated with AD.
Collapse
|
15
|
Fazio F, Ulivieri M, Volpi C, Gargaro M, Fallarino F. Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 2018; 38:16-23. [PMID: 29471184 DOI: 10.1016/j.coph.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
A large body of evidence suggests that neuroinflammation lies at the core of nearly all CNS disorders, including psychiatric disorders. Invading and local immune cells orchestrate the series of events that lead to either tissue repair or damage in response to neuroinflammation. Both lymphocytes and microglia express metabotropic glutamate (mGlu) receptors, which respond to glutamate or other endogenous activators (e.g. some kynurenine metabolites of tryptophan metabolism) influencing immune phenotype and the balance between pro-inflammatory and anti-inflammatory cytokines. Here, we offer an up-to-date on the role of individual mGlu receptor subtypes in the regulation of innate and adaptive immune response, highlighting the relevance of this information in the development of subtype-selective mGlu receptor ligands for treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Martina Ulivieri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| |
Collapse
|
16
|
Ferrigno A, Berardo C, Di Pasqua LG, Siciliano V, Richelmi P, Nicoletti F, Vairetti M. Selective Blockade of the Metabotropic Glutamate Receptor mGluR5 Protects Mouse Livers in In Vitro and Ex Vivo Models of Ischemia Reperfusion Injury. Int J Mol Sci 2018; 19:E314. [PMID: 29360756 PMCID: PMC5855547 DOI: 10.3390/ijms19020314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
2-Methyl-6-(phenylethynyl)pyridine (MPEP), a negative allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, protects hepatocytes from ischemic injury. In astrocytes and microglia, MPEP depletes ATP. These findings seem to be self-contradictory, since ATP depletion is a fundamental stressor in ischemia. This study attempted to reconstruct the mechanism of MPEP-mediated ATP depletion and the consequences of ATP depletion on protection against ischemic injury. We compared the effects of MPEP and other mGluR5 negative modulators on ATP concentration when measured in rat hepatocytes and acellular solutions. We also evaluated the effects of mGluR5 blockade on viability in rat hepatocytes exposed to hypoxia. Furthermore, we studied the effects of MPEP treatment on mouse livers subjected to cold ischemia and warm ischemia reperfusion. We found that MPEP and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) deplete ATP in hepatocytes and acellular solutions, unlike fenobam. This finding suggests that mGluR5s may not be involved, contrary to previous reports. MPEP, as well as MTEP and fenobam, improved hypoxic hepatocyte viability, suggesting that protection against ischemic injury is independent of ATP depletion. Significantly, MPEP protected mouse livers in two different ex vivo models of ischemia reperfusion injury, suggesting its possible protective deployment in the treatment of hepatic inflammatory conditions.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| | - Veronica Siciliano
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Roma, Italy.
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
17
|
Beneventano M, Spampinato SF, Merlo S, Chisari M, Platania P, Ragusa M, Purrello M, Nicoletti F, Sortino MA. Shedding of Microvesicles from Microglia Contributes to the Effects Induced by Metabotropic Glutamate Receptor 5 Activation on Neuronal Death. Front Pharmacol 2017; 8:812. [PMID: 29170640 PMCID: PMC5684115 DOI: 10.3389/fphar.2017.00812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 μM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 μM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 μg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 μM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 μM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction.
Collapse
Affiliation(s)
- Martina Beneventano
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona F Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Chisari
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paola Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Ye X, Yu L, Zuo D, Zhang L, Zu J, Hu J, Tang J, Bao L, Cui C, Zhang R, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zhang Z, Xiao Q, Liu Y, Xiang J, Zhang X, Cui G. Activated mGluR5 protects BV2 cells against OGD/R induced cytotoxicity by modulating BDNF-TrkB pathway. Neurosci Lett 2017. [PMID: 28642149 DOI: 10.1016/j.neulet.2017.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Activated Metabotropic glutamate receptors 5(mGluR5) exhibits protective effects against ischemic brain damage, but the underlying mechanisms are not clearly known. Brain-derived neurotrophic factor (BDNF), as a valuable member of neurotrophic factor family, exerts its protection by combining with its high-affinity receptor tyrosine protein kinase B (TrkB). To investigate the role of activated mGluR5 against oxygen-glucose deprivation (OGD)/reoxygenation (R)-mediated cytotoxicity, the cell viability, apoptosis, the release of inflammatory cytokines and accumulation of reactive oxygen species (ROS) were evaluated in BV2 cells (Microglia cell line) with or without OGD/R exposure. Our data show that CHPG (the selective mGluR5 agonist) pretreatment, as an mGluR5 agonist, protected BV2 cells against OGD/R-induced cytotoxicity, apoptosis, the release of inflammatory cytokines, and the accumulation of ROS. However, these effects were significantly reversed by the mGluR5 antagonist MPEP pretreatment. Our data also show that the expressions of BDNF and TrkB were significantly decreased in BV2 cells with OGD/R exposure. CHPG pretreatment significantly enhanced the expressions of BDNF and TrkB in BV2 cells with OGD/R exposure. However, the increased expressions were significantly abrogated by MPEP pretreatment. In addition, inhibition of BDNF/TrKB pathway by K252a also attenuated the protective effects of activated mGluR5 against OGD/R-induced cytotoxicity, apoptosis and the release of inflammatory cytokines. Morever, pretreatment with exogenous BDNF protected BV2 cells against OGD/R induced apoptosis and release of inflammatory cytokines. These data suggested that BDNF/TrKB pathway may be involved in regulating activated mGluR5' protective effects against OGD/R induced cytotoxicity in BV2 cells.
Collapse
Affiliation(s)
- Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Lu Yu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Dandan Zuo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Liang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jinxia Hu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jiao Tang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Lei Bao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Chengcheng Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Ruixue Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Guoliang Jin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Hongjuan Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Qihua Xiao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Yonghai Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Xueling Zhang
- Department of Neurology, Suqian People's Hospital, Suqian, Jiangsu Province, 223800, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
| |
Collapse
|
19
|
Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology 2017; 381:51-63. [DOI: 10.1016/j.tox.2017.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
|
20
|
Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6032306. [PMID: 27777645 PMCID: PMC5061974 DOI: 10.1155/2016/6032306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs) are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.
Collapse
|
21
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016. [PMID: 27010930 DOI: 10.1007/s10735‐016‐9671‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
22
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016; 47:273-86. [PMID: 27010930 DOI: 10.1007/s10735-016-9671-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
23
|
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2016; 174:1733-1749. [PMID: 26750203 DOI: 10.1111/bph.13425] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Microglia are the resident immune cells of the CNS and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of the members of the NOX family is to generate reactive oxygen species (ROS) that are believed to be important in CNS host defence and in the redox signalling circuits that shape the different activation phenotypes of microglia. NOX are also important in pathological conditions, where over-generation of ROS contributes to neuronal loss via direct oxidative tissue damage or disruption of redox signalling circuits. In this review, we assess the evidence for involvement of NOX in CNS physiopathology, with particular emphasis on the most important surface receptors that lead to generation of NOX-derived ROS. We evaluate the potential significance of the subcellular distribution of NOX isoforms for redox signalling or release of ROS to the extracellular medium. Inhibitory mechanisms that have been reported to restrain NOX activity in microglia and macrophages in vivo are also discussed. We provide a critical appraisal of frequently used and recently developed NOX inhibitors. Finally, we review the recent literature on NOX and other sources of ROS that are involved in activation of the inflammasome and discuss the potential influence of microglia-derived oxidants on neurogenesis, neural differentiation and culling of surplus progenitor cells. The degree to which excessive, badly timed or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- J Haslund-Vinding
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.,Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - V Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - F Vilhardt
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|