1
|
Fan X, Diao W, Wang H, Yin X, Qian W. Interferon Regulatory Factors as a Potential Therapeutic Target for Neuroinflammation: A Focus on Alzheimer's Disease. Int J Mol Sci 2025; 26:2906. [PMID: 40243463 PMCID: PMC11988619 DOI: 10.3390/ijms26072906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Interferon Regulatory Factors (IRFs) are critical modulators of immune and inflammatory responses, yet their roles in Alzheimer's disease (AD) and other neurodegenerative disorders remain incompletely understood. While IRFs are recognized for their regulatory functions in neuroinflammation, microglial activation, and neuronal survival, their dual roles as both drivers of pathological inflammation and mediators of neuroprotective pathways underscore a sophisticated regulatory paradox in neurodegenerative disorders. This review aims to synthesize current evidence on IRF-mediated neuroinflammation in AD and related diseases, focusing on the multifaceted functions of key IRF family members, including IRF1, IRF3, and IRF7. We critically evaluate their divergent roles: IRF1 and IRF3, for instance, exacerbate neuroinflammatory cascades and amyloid-beta (Aβ) pathology in AD, whereas IRF7 may paradoxically suppress inflammation under specific conditions. Additionally, we explore IRF dysregulation in Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease, emphasizing shared and distinct mechanisms across neurodegenerative disorders. Restoring IRF balance through genetic manipulation, small-molecule inhibitors, or microbiome-derived modulators could attenuate neuroinflammation, enhance Aβ clearance, and protect neuronal integrity. Ultimately, this work provides a framework for future research to harness IRF signaling pathways in the development of precision therapies for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Wei Qian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (X.F.); (W.D.); (H.W.); (X.Y.)
| |
Collapse
|
2
|
Esmaealzadeh N, Ram M, Abdolghaffari A, Marques AM, Bahramsoltani R. Toll-like receptors in inflammatory bowel disease: A review of the role of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155178. [PMID: 38007993 DOI: 10.1016/j.phymed.2023.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation within the gastrointestinal tract with a remarkable impact on patients' quality of life. Toll-like receptors (TLR), as a key contributor of immune system in inflammation, has a critical role in the pathogenesis of IBD and thus, can be a suitable target of therapeutic agents. Medicinal plants have long been considered as a source of bioactive agents for different diseases, including IBD. PURPOSE This review discusses current state of the art on the role of plant-derived compounds for the management of IBD with a focus on TLRs. METHODS Electronic database including PubMed, Web of Science, and Scopus were searched up to January 2023 and all studies in which anticolitis effects of a phytochemical was assessed via modulation of TLRs were considered. RESULTS Different categories of phytochemicals, including flavonoids, lignans, alkaloids, terpenes, saccharides, and saponins have demonstrated modulatory effects on TLR in different animal and cell models of bowel inflammation. Flavonoids were the most studied phytochemicals amongst others. Also, TLR4 was the most important type of TLRs which were modulated by phytochemicals. Other mechanisms such as inhibition of pro-inflammatory cytokines, nuclear factor-κB pathway, nitric oxide synthesis pathway, cyclooxygenase-2, lipid peroxidation, as well as induction of endogenous antioxidant defense mechanisms were also reported for phytochemicals in various IBD models. CONCLUSION Taken together, a growing body of pre-clinical evidence support the efficacy of herbal compounds for the treatment of IBD via modulation of TLRs. Future clinical studies are recommended to assess the safety and efficacy of these compounds in human.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Ram
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - André Mesquita Marques
- Department of Natural Products, Institute of Drug Technology (Farmanguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Ma C, Wei X, Wang F, Zhang T, Jiang Y, Meng Z, Zhang Z. Tumor necrosis factor α–induced protein 3 mediates inflammation and neuronal autophagy in Parkinson's disease via the NFκB and mTOR pathways. Neurosci Lett 2023; 805:137223. [PMID: 37019273 DOI: 10.1016/j.neulet.2023.137223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
This study aimed to probe the function of tumor necrosis factor α-induced protein 3 (TNFAIP3) in the pathogenesis of Parkinson disease (PD) with its association with autophagy and inflammatory response. TNFAIP3 was reduced in the SN of PD patients (the GSE54282 dataset) and mice and in the MPP+-treated SK-N-SH cells. TNFAIP3 inhibited inflammatory response and enhanced autophagy, thereby alleviating PD in mice. NFκB and mTOR pathways were activated in the SN of PD mice and MPP+-treated cells. TNFAIP3 blocked the two pathways by preventing the p65 nuclear translocation and stabilizing DEPTOR, an endogenous inhibitor of mTOR. NFκB activator LPS and mTOR activator MHY1485 reversed the effects of TNFAIP3 on mitigation of injury in PD mice and in SK-N-SH cells induced with MPP+. Altogether, TNFAIP3 played a neuroprotective role in MPTP-induced mice by restricting NFκB and mTOR pathways.
Collapse
|
5
|
Ge X, Zhou Z, Yang S, Ye W, Wang Z, Wang J, Xiao C, Cui M, Zhou J, Zhu Y, Wang R, Gao Y, Wang H, Tang P, Zhou X, Wang C, Cai W. Exosomal USP13 derived from microvascular endothelial cells regulates immune microenvironment and improves functional recovery after spinal cord injury by stabilizing IκBα. Cell Biosci 2023; 13:55. [PMID: 36915206 PMCID: PMC10012460 DOI: 10.1186/s13578-023-01011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) can result in irreversible sensory and motor disability with no effective treatment currently. After SCI, infiltrated macrophages accumulate in epicenter through destructed blood-spinal cord barrier (BSCB). Further, great majority of macrophages are preferentially polarized to M1 phenotype, with only a few transient M2 phenotype. The purpose of this study was to explore roles of vascular endothelial cells in microglia/macrophages polarization and the underlying mechanism. Lipopolysaccharide (LPS) was used to pretreat BV2 microglia and RAW264.7 macrophages followed by administration of conditioned medium from microvascular endothelial cell line bEnd.3 cells (ECM). Analyses were then performed to determine the effects of exosomes on microglia/macrophages polarization and mitochondrial function. The findings demonstrated that administration of ECM shifted microglia/macrophages towards M2 polarization, ameliorated mitochondrial impairment, and reduced reactive oxygen species (ROS) production in vitro. Notably, administration of GW4869, an exosomal secretion inhibitor, significantly reversed these observed benefits. Further results revealed that exosomes derived from bEnd.3 cells (Exos) promote motor rehabilitation and M2 polarization of microglia/macrophages in vivo. Ubiquitin-specific protease 13 (USP13) was shown to be significantly enriched in BV2 microglia treated with Exos. USP13 binds to, deubiquitinates and stabilizes the NF-κB inhibitor alpha (IκBα), thus regulating microglia/macrophages polarization. Administration of the selective IκBα inhibitor betulinic acid (BA) inhibited the beneficial effect of Exos in vivo. These findings uncovered the potential mechanism underlying the communications between vascular endothelial cells and microglia/macrophages after SCI. In addition, this study indicates exosomes might be a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chenyu Xiao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jiawen Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rixiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
6
|
Sun Q, Zhang X, Fan J, Zhang L, Ji H, Xue J, Zhang C, Chen R, Zhao J, Chen J, Liu X, Song D. Geniposide protected against cerebral ischemic injury through the anti-inflammatory effect via the NF-κB signaling pathway. Transl Neurosci 2023; 14:20220273. [PMID: 37333874 PMCID: PMC10276575 DOI: 10.1515/tnsci-2022-0273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 06/20/2023] Open
Abstract
Context Accumulated evidence indicates that geniposide exhibits neuroprotective effects in ischemic stroke. However, the potential targets of geniposide remain unclear. Objective We explore the potential targets of geniposide in ischemic stroke. Materials and methods Adult male C57BL/6 mice were subjected to the middle cerebral artery occlusion (MCAO) model. Mice were randomly divided into five groups: Sham, MCAO, and geniposide-treated (i.p. twice daily for 3 days before MCAO) at doses of 25, 75, or 150 mg/kg. We first examined the neuroprotective effects of geniposide. Then, we further explored via biological information analysis and verified the underlying mechanism in vivo and in vitro. Results In the current study, geniposide had no toxicity at concentrations of up to 150 mg/kg. Compared with the MCAO group, the 150 mg/kg group of geniposide significantly (P < 0.05) improved neurological deficits, brain edema (79.00 ± 0.57% vs 82.28 ± 0.53%), and infarct volume (45.10 ± 0.24% vs 54.73 ± 2.87%) at 24 h after MCAO. Biological information analysis showed that the protective effect was closely related to the inflammatory response. Geniposide suppressed interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) expression in the brain homogenate, as measured by enzyme-linked immunosorbent assay (ELISA). Geniposide upregulated A20 and downregulated TNF receptor-associated factor-6 and nuclear factor kappa-B phosphorylation in the MCAO model and lipopolysaccharide-treated BV2 cells at 100 μM. Conclusions Geniposide exhibited a neuroprotective effect via attenuating inflammatory response, as indicated by biological information analysis, in vivo and in vitro experiments, which may provide a potential direction for the application of geniposide in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Hui Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
- Department of Neurology, First Hospital of Qinhuangdao, Hebei, China
| |
Collapse
|
7
|
Zhang Y, Wang Z, Wang R, Xia L, Cai Y, Tong F, Gao Y, Ding J, Wang X. Conditional knockout of ASK1 in microglia/macrophages attenuates epileptic seizures and long-term neurobehavioural comorbidities by modulating the inflammatory responses of microglia/macrophages. J Neuroinflammation 2022; 19:202. [PMID: 35941644 PMCID: PMC9361603 DOI: 10.1186/s12974-022-02560-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/Mϕ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. Methods Mi/Mϕ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/Mϕ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/Mϕ in contact with apoptotic neurons, as well as neuronal damage. Results ASK1 was highly expressed in Mi/Mϕ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/Mϕ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/Mϕ. Conditional knockout of ASK1 increased Mi/Mϕ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. Conclusion Conditional knockout of ASK1 in Mi/Mϕ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02560-5.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhangyang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongrong Wang
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Fan T, Du Y, Zhang M, Zhu AR, Zhang J. Senolytics Cocktail Dasatinib and Quercetin Alleviate Human Umbilical Vein Endothelial Cell Senescence via the TRAF6-MAPK-NF-κB Axis in a YTHDF2-Dependent Manner. Gerontology 2022; 68:920-934. [PMID: 35468611 DOI: 10.1159/000522656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Senescent cells play a key role in the initiation and development of various age-related diseases. Human umbilical vein endothelial cells (HUVECs) senescence is closely associated with age-related cardiovascular diseases. Accumulating evidence has demonstrated that senolytics, the combination of dasatinib and quercetin (D+Q), could selectively eliminate senescent cells. N6-methyladenosine (m6A), the most abundant internal transcript modification, greatly influences RNA metabolism and modulates gene expression. We aimed to investigate whether RNA m6A functions in lipopolysaccharide (LPS)-induced HUVECs senescence and D+Q suppress HUVECs senescence by regulating RNA m6A. METHODS Senescence-associated β-galactosidase activity, western blot, and real-time quantitative polymerase chain reaction were performed to demonstrate that D+Q suppress HUVECs senescence. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and RIP-qPCR confirmed that RNA m6A plays a key role in the suppression of HUVECs senescence by D+Q. Chromatin immunoprecipitation and mRNA stability assay were carried out to prove that D+Q alleviate HUVECs senescence in a YTHDF2-dependent manner. RESULTS Here, we demonstrate that D+Q alleviate LPS-induced senescence in HUVECs via inhibiting autocrine and paracrine of the senescence-associated secretory phenotype (SASP). We further confirm that D+Q alleviate HUVECs senescence via the TNF receptor-associated factor 6 (TRAF6)-MAPK pathway. Mechanically, this study validates that D+Q suppress SASP by upregulating m6A reader YTHDF2. Besides, YTHDF2 regulates the stability of MAP2K4 and MAP4K4 mRNAs. CONCLUSION Collectively, we first identified that D+Q alleviate LPS-induced senescence in HUVECs via the TRAF6-MAPK-NF-κB axis in a YTHDF2-dependent manner, providing novel ideas for clinical treatment of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Du
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Austin Rui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jianjun Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
10
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
11
|
Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, Ji C, Wang Z, Bai J, Fan J, Yin G, Cai W. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res 2021; 71:e12769. [PMID: 34562326 DOI: 10.1111/jpi.12769] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) is a devastating trauma that leads to irreversible motor and sensory dysfunction and is, so far, without effective treatment. Recently, however, nano-sized extracellular vesicles derived from preconditioned mesenchymal stem cells (MSCs) have shown great promise in treating various diseases, including SCI. In this study, we investigated whether extracellular vesicles (MEVs) derived from MSCs pretreated with melatonin (MT), which is well recognized to be useful in treating diseases, including Alzheimer's disease, non-small cell lung cancer, acute ischemia-reperfusion liver injury, chronic kidney disease, and SCI, are better able to promote functional recovery in mice after SCI than extracellular vesicles derived from MSCs without preconditioning (EVs). MEVs were found to facilitate motor behavioral recovery more than EVs and to increase microglia/macrophages polarization from M1-like to M2-like in mice. Experiments in BV2 microglia and RAW264.7 macrophages confirmed that MEVs facilitate M2-like polarization and also showed that they reduce the production of reactive oxygen species (ROS) and regulate mitochondrial function. Proteomics analysis revealed that ubiquitin-specific protease 29 (USP29) was markedly increased in MEVs, and knockdown of USP29 in MEVs (shUSP29-MEVs) abolished MEVs-mediated benefits in vitro and in vivo. We then showed that USP29 interacts with, deubiquitinates and therefore stabilizes nuclear factor-like 2 (NRF2), thereby regulating microglia/macrophages polarization. In NRF2 knockout mice, MEVs failed to promote functional recovery and M2-like microglia/macrophages polarization. We also showed that MT reduced global N6-methyladenosine (m6 A) modification and levels of the m6 A "writer" methyltransferase-like 3 (METTL3). The stability of USP29 mRNA in MSCs was enhanced by treatment with MT, but inhibited by overexpression of METTL3. This study describes a very promising extracellular vesicle-based approach for treating SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Meng Z, Xu R, Xie L, Wu Y, He Q, Gao P, He X, Chen Q, Xie Q, Zhang J, Yang Q. A20/Nrdp1 interaction alters the inflammatory signaling profile by mediating K48- and K63-linked polyubiquitination of effectors MyD88 and TBK1. J Biol Chem 2021; 297:100811. [PMID: 34023381 PMCID: PMC8233150 DOI: 10.1016/j.jbc.2021.100811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
A20 is a potent anti-inflammatory protein that mediates both inflammation and ubiquitination in mammals, but the related mechanisms are not clear. In this study, we performed mass spectrometry (MS) screening, gene ontology (GO) analysis, and coimmunoprecipitation (co-IP) in a lipopolysaccharide (LPS)-induced inflammatory cell model to identify novel A20-interacting proteins. We confirmed that the E3 ubiquitin ligase Nrdp1, also known as ring finger protein 41 (RNF41), interacted with A20 in LPS-stimulated cells. Further co-IP analysis demonstrated that when A20 was knocked out, degradation-inducing K48-linked ubiquitination of inflammatory effector MyD88 was decreased, but protein interaction-mediating K63-linked ubiquitination of another inflammatory effector TBK1 was increased. Moreover, western blot experiments showed that A20 inhibition induced an increase in levels of MyD88 and phosphorylation of downstream effector proteins as well as of TBK1 and a downstream effector, while Nrdp1 inhibition induced an increase in MyD88 but a decrease in TBK1 levels. When A20 and Nrdp1 were coinhibited, no further change in MyD88 was observed, but TBK1 levels were significantly decreased compared with those upon A20 inhibition alone. Gain- and loss-of-function analyses revealed that the ZnF4 domain of A20 is required for Nrdp1 polyubiquitination. Upon LPS stimulation, the inhibition of Nrdp1 alone increased the secretion of IL-6 and TNF-α but decreased IFN-β secretion, as observed in other studies, suggesting that Nrdp1 preferentially promotes the production of IFN-β. Taken together, these results demonstrated that A20/Nrdp1 interaction is important for A20 anti-inflammation, thus revealing a novel mechanism for the anti-inflammatory effects of A20.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Xu
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lexing Xie
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yutong Wu
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian He
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Gao
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohui He
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Chen
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qi Xie
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
13
|
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders. J Physiol 2021; 599:1379-1389. [PMID: 33404072 DOI: 10.1113/jp279771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the gut microbiota has been increasingly implicated in the development of many extraintestinal disorders, including neurodevelopmental and neurodegenerative disorders. Despite this growing connection, our understanding of the precise mechanisms behind these effects is currently lacking. Pattern recognition receptors (PRRs) are important innate immune proteins expressed on the surface and within the cytoplasm of a multitude of cells, both immune and otherwise, including epithelial, endothelial and neuronal. PRRs comprise four major subfamilies: the Toll-like receptors (TLRs), the nucleotide-binding oligomerization domain leucine rich repeats-containing receptors (NLRs), the retinoic acid inducible gene 1-like receptors and the C-type lectin receptors. Recognition of commensal bacteria by PRRs is critical for maintaining host-microbe interactions and homeostasis, including behaviour. The expression of PRRs on multiple cell types makes them a highly interesting and novel target for regulation of host-microbe signalling, which may lead to gut-brain signalling. Emerging evidence indicates that two of the four known families of PRRs (the NLRs and the TLRs) are involved in the pathogenesis of neurodevelopmental and neurodegenerative disorders via the gut-brain axis. Taken together, increasing evidence supports a role for these PRRs in the development of neurological disorders, including Alzheimer's disease, Parkinson's disease and multiple sclerosis, via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Liao K, Niu F, Hu G, Guo ML, Sil S, Buch S. HIV Tat-mediated induction of autophagy regulates the disruption of ZO-1 in brain endothelial cells. Tissue Barriers 2020; 8:1748983. [PMID: 32299282 DOI: 10.1080/21688370.2020.1748983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood-brain barrier (BBB) is a tight barrier that is critical for preventing the entry of pathogens and small molecules into the brain. HIV protein Tat (Tat) is known to disrupt the tight junctions of the BBB. Autophagy is an intracellular process that involves degradation and recycling of damaged organelles to the lysosome and has recently been implicated in the BBB disruption. The role of autophagy in Tat-mediated BBB disruption, however, remains elusive. Herein we hypothesized that Tat induces endothelial autophagy resulting in decreased expression of the tight junction protein ZO-1 leading to breach of the BBB. In this study, we demonstrated that exposure of human brain microvessel endothelial cells (HBMECs) to Tat resulted in induction of autophagy in a dose- and time-dependent manner, with upregulation of BECN1/Beclin 1, ATG5 and MAP1LC3B proteins and a concomitant downregulation of the tight junction protein ZO-1 ultimately leading to increased endothelial cell monolayer paracellular permeability in an in vitro BBB model. Pharmacological and genetic inhibition of autophagy resulted in the abrogation of Tat-mediated induction of MAP1LC3B with a concomitant restoration of tight junction proteins, thereby underscoring the role of autophagy in Tat-mediated breach of the BBB. Additionally, our data also demonstrated that Tat-mediated induction of autophagy involved PELI1/K63-linked ubiquitination of BECN1. Increased autophagy and decreased ZO-1 was further recapitulated in microvessels isolated from the brains of HIV Tg26 mice as well as the frontal cortex of HIV-infected autopsied brains. Overall, our findings identify autophagy as an important mechanism underlying Tat-mediated disruption of the BBB.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Fang Niu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Guoku Hu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Ming-Lei Guo
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| |
Collapse
|
16
|
Zhang Y, Zuo Y, Li B, Xie J, Ma Z, Thirupathi A, Yu P, Gao G, Shi M, Zhou C, Xu H, Chang Y, Shi Z. Propofol prevents oxidative stress and apoptosis by regulating iron homeostasis and targeting JAK/STAT3 signaling in SH-SY5Y cells. Brain Res Bull 2019; 153:191-201. [PMID: 31472185 DOI: 10.1016/j.brainresbull.2019.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
The present study aimed to test the hypothesis that propofol (PRO) could exert a neuroprotective effect via inhibiting oxidative stress induced by iron accumulation. Human SH-SY5Y cells were pretreated with ferric citrate (FAC), and then were protected by PRO. Cell viability was measured by MTT method. Iron levels were assayed by ICP-MS. Cell apoptosis was examined by TUNEL and digital holographic technique. Malondialdehyde (MDA), reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) depolarization were measured by MDA, DCFH-DA and JC-1 kits, respectively. The expression of proteins or genes involved in iron metabolism such as ferritin, TfR1, DMT1, Fpn1 and hepcidin, and other apoptosis-related proteins including Bcl2, Bax, Bid, Cox2, IL-6, JAK1 and STAT3 were detected by western blot. Our results showed low concentration of PRO (5 μM) could significantly prevent FAC induced apoptosis via inhibiting oxidative stress and iron accumulation. PRO suppressed the increase of ROS and MDA and decrease of MMP induced by FAC. PRO significantly down-regulated the expression of ferritin and up-regulated the expression of TfR1and Fpn1, but had no effect of DMT1. Furthermore, this effect was not done by PRO chelating iron. Meanwhile, PRO suppressed the inflammatory response through inhibiting IL-6 and Cox2 expression and activating JAK/STAT3 signaling induced by iron overload. In conclusion, here we demonstrated a new antioxidation mechanism of PRO. PRO could protect against nerve cell injury induced by overload of iron through regulating iron metabolism and inhibiting stress oxidative and inflammation reaction pathways by targeting JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Yong Zuo
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Bowen Li
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Jinhong Xie
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Zhao Ma
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Mengtong Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Changhao Zhou
- First Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hongmeng Xu
- Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China.
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China.
| |
Collapse
|
17
|
Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y, Liu Y, Wang X, Ji J. Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain Injury: A Potential Trigger of Necroptosis. Front Mol Neurosci 2019; 12:222. [PMID: 31607859 PMCID: PMC6761256 DOI: 10.3389/fnmol.2019.00222] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death is an important biological process that plays an indispensable role in traumatic brain injury (TBI). Inhibition of necroptosis, a type of programmed cell death, is pivotal in neuroprotection and in preventing associated inflammatory responses. Our results showed that necroptosis occurred in human brain tissues after TBI. Necroptosis was also induced by controlled cortical impact (CCI) injury in a rat model of TBI and was accompanied by high translocation of high-mobility group box-1 (HMGB1) to the cytoplasm. HMGB1 was then passed through the impaired cell membrane to upregulate the receptor for advanced glycation end-products (RAGE), nuclear factor (NF)-κB, and inflammatory factors such as interleukin-6 (IL-6), interleukin-1 (IL-1β), as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Necroptosis was alleviated by necrostatin-1 and melatonin but not Z-VAD (a caspase inhibitor), which is consistent with the characteristic of caspase-independent signaling. This study also demonstrated that tumor necrosis factor, alpha-induced protein 3 (TNFAIP3, also known as A20) was indispensable for regulating and controlling necroptosis and inflammation after CCI. We found that a lack of A20 in a CCI model led to aggressive necroptosis and attenuated the anti-necroptotic effects of necrostatin-1 and melatonin.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
19
|
Li M, Zhang D, Ge X, Zhu X, Zhou Y, Zhang Y, Peng X, Shen A. TRAF6-p38/JNK-ATF2 axis promotes microglial inflammatory activation. Exp Cell Res 2019; 376:133-148. [PMID: 30763583 DOI: 10.1016/j.yexcr.2019.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Activating transcription factor 2 (ATF2), a member of the alkaline-leucine zipper family, is widely expressed in various tissues, and reportedly involved in inflammatory responses to various irritates, but its role in the central nervous system (CNS) remains unclear. This study aimed to investigate the expression and biological function of ATF2 in CNS inflammation. Utilizing the LPS-induced neuroinflammation model on mice, we first found ATF2 up-regulation and its co-localization with microglia in inflamed mice brain. In vitro, we revealed an increased expression, phosphorylation, and nuclear accumulation of ATF2 in LPS-treated BV2 microglia cells. Inhibiting ATF2 significantly decreased the expression of pro-inflammatory factors in LPS-treated microglia, and alleviated neuronal apoptosis induced by the conditioned medium of activated microglia. Knocking down TRAF6, an important adaptor of the TLR4/MAPK/NF-κB signaling pathway, suppressed the LPS-induced ATF2 expression and phosphorylation, accompanied by the decreased p38/JNK phosphorylation, in microglia. Blocking p38 or JNK signaling pathway by the specific inhibitors reversed the TRAF6-overexpression mediated ATF2 activation. Taken together, our data first proved the pro-inflammatory function of ATF2 in microglia, and suggested that the TRAF6-JNK/p38-ATF2 axis might promote microglial inflammatory activation and thus aggravate neuronal injury in brain, which might become a potential therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Mengmeng Li
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xin Ge
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yong Zhou
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiao Peng
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Aiguo Shen
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China; Cancer Research Center of Nantong, Tumor Hospital Affiliated to Nantong University, Nantong 226361, People's Republic of China.
| |
Collapse
|
20
|
Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Int J Mol Sci 2018; 19:ijms19113576. [PMID: 30428531 PMCID: PMC6274744 DOI: 10.3390/ijms19113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
Protein ubiquitylation plays a central role in eukaryotic cell physiology. It is involved in several regulatory processes, ranging from protein folding or degradation, subcellular localization of proteins, vesicular trafficking and endocytosis to DNA repair, cell cycle, innate immunity, autophagy, and apoptosis. As such, it is reasonable that pathogens have developed a way to exploit such a crucial system to enhance their virulence against the host. Hence, bacteria have evolved a wide range of effectors capable of mimicking the main players of the eukaryotic ubiquitin system, in particular ubiquitin ligases, by interfering with host physiology. Here, we give an overview of this topic and, in particular, we detail and discuss the mechanisms developed by pathogenic bacteria to hijack the host ubiquitination system for their own benefit.
Collapse
|