1
|
Chin SP, Saffery NS, Then KY, Cheong SK. Preclinical assessments of safety and tumorigenicity of very high doses of allogeneic human umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2024; 60:307-319. [PMID: 38421574 PMCID: PMC11014873 DOI: 10.1007/s11626-024-00852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Human umbilical cord-mesenchymal stem cells (hUC-MSCs) have been widely investigated as a new therapeutic agent to treat injuries and inflammatory-mediated and autoimmune diseases. Previous studies have reported on the safety of low-dose infusion of hUC-MSCs, but information on the cell behaviour at higher doses and frequency of injection of the cells remains uncertain. The aim of the present study was to demonstrate the safety and efficacy of hUC-MSCs by Cytopeutics® (Selangor, Malaysia) from low to an extremely high dose in different monitoring periods in healthy BALB/c mice as well as assessing the tumorigenicity of the cells in B-NDG SCID immunocompromised mice. Umbilical cord from two healthy human newborns was obtained and the isolation of the hUC-MSCs was performed based on previous established method. Assessment of the cells at different doses of single or multiple administrations was performed on healthy BALB/c mice in dose range finding, sub-acute (7 d and 28 d) and sub-chronic periods (90 d). Tumorigenicity potential of Cytopeutics® hUC-MSCs was also evaluated on B-NDG immunocompromised mice for 26 wk. Single or multiple administrations of Cytopeutics® hUC-MSCs up to 40 × 106 cells per kilogramme of body weight (kg BW) were found to have no adverse effect in terms of clinical symptoms, haematology and other laboratory parameters, and histology examination in healthy BALB/c mice. hUC-MSCs were also found to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in a dose-dependent manner. No sign of tumor formation was observed in B-NDG mice in the 26-wk tumorigenicity assessment. Single or multiple administration of allogenic Cytopeutics® hUC-MSCs was safe even at very high doses, is non-tumorigenic and did not cause adverse effects in mice throughout the evaluation periods. In addition, Cytopeutics® hUC-MSCs exhibited immunomodulatory effect in a dose-dependent manner.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia.
- CMH Specialist Hospital, Jalan Tun Dr. Ismail, 70200, Seremban, Negeri Sembilan, Malaysia.
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- Cryocord Sdn Bhd, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon-Keng Cheong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Oprişoreanu AM, Ryan F, Richmond C, Dzekhtsiarova Y, Carragher NO, Becker T, David S, Becker CG. Drug screening in zebrafish larvae reveals inflammation-related modulators of secondary damage after spinal cord injury in mice. Theranostics 2023; 13:2531-2551. [PMID: 37215570 PMCID: PMC10196818 DOI: 10.7150/thno.81332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Prolonged inflammation after spinal cord injury is detrimental to recovery. To find pharmacological modulators of the inflammation response, we designed a rapid drug screening paradigm in larval zebrafish followed by testing of hit compounds in a mouse spinal cord injury model. Methods: We used reduced il-1β linked green fluorescent protein (GFP) reporter gene expression as a read-out for reduced inflammation in a screen of 1081 compounds in larval zebrafish. Hit drugs were tested in a moderate contusion model in mice for cytokine regulation, and improved tissue preservation and locomotor recovery. Results: Three compounds robustly reduced il-1β expression in zebrafish. Cimetidine, an over-the-counter H2 receptor antagonist, also reduced the number of pro-inflammatory neutrophils and rescued recovery after injury in a zebrafish mutant with prolonged inflammation. Cimetidine action on il-1β expression levels was abolished by somatic mutation of H2 receptor hrh2b, suggesting specific action. In mice, systemic treatment with Cimetidine led to significantly improved recovery of locomotor behavior as compared to controls, accompanied by decreased neuronal tissue loss and a shift towards a pro-regenerative profile of cytokine gene expression. Conclusion: Our screen revealed H2 receptor signaling as a promising target for future therapeutic interventions in spinal cord injury. This work highlights the usefulness of the zebrafish model for rapid screening of drug libraries to identify therapeutics to treat mammalian spinal cord injury.
Collapse
Affiliation(s)
- Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Fari Ryan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec, H3G 1A4
| | - Claire Richmond
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Yuliya Dzekhtsiarova
- Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Neil O. Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Samuel David
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec, H3G 1A4
| | - Catherina G. Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
3
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Mesenchymal stem cells exert renoprotection via extracellular vesicle-mediated modulation of M2 macrophages and spleen-kidney network. Commun Biol 2022; 5:753. [PMID: 35902687 PMCID: PMC9334610 DOI: 10.1038/s42003-022-03712-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have shown therapeutic potentials against refractory diseases. However, the detailed therapeutic mechanisms remain unclear. Here, we report the therapeutic actions of human ASCs in nephritis, focusing on cellular dynamics and multi-organ networks. Intravenously-administered ASCs accumulated in spleen but not kidneys. Nevertheless, ASCs increased M2 macrophages and Tregs in kidneys and drove strong renoprotection. Splenectomy abolished these therapeutic effects. ASC-derived extracellular vesicles (EVs) were transferred to M2 macrophages, which entered the bloodstream from spleen. EVs induced the transcriptomic signatures of hyperpolarization and PGE2 stimulation in M2 macrophages and ameliorated glomerulonephritis. ASCs, ASC-derived EVs, and EV-transferred M2 macrophages enhanced Treg induction. These findings suggest that EV transfer from spleen-accumulated ASCs to M2 macrophages and subsequent modulation of renal immune-environment underlie the renoprotective effects of ASCs. Our results provide insights into the therapeutic actions of ASCs, focusing on EV-mediated modulation of macrophages and the spleen-kidney immune network. The renoprotective effects of adipose-derived mesenchymal stem cells (ASCs) are enhanced through the transfer of EVs predominantly to M2 macrophages in the spleen, providing insights into therapeutic avenues for ASCs.
Collapse
|
5
|
Xue J, Gao J, Gu Y, Wang A, Yu S, Li B, Yin Y, Wang J, Su W, Zhang H, Ren W, Gu W, Lv Z, Mu Y, Cheng Y. Human umbilical cord-derived mesenchymal stem cells alleviate insulin resistance in diet-induced obese mice via an interaction with splenocytes. Stem Cell Res Ther 2022; 13:109. [PMID: 35313972 PMCID: PMC8935757 DOI: 10.1186/s13287-022-02791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Previous research has demonstrated that the spleen plays an important role in mesenchymal stem cell (MSC)-mediated alleviation of acute inflammation, as MSC infusion increases the spleen-derived anti-inflammatory cytokine interleukin 10 (IL-10) levels. However, studies on splenic involvement in MSC-induced protection against chronic inflammatory diseases are limited. Obesity is characterized by chronic low-grade inflammation, a key driver of insulin resistance. This study aims to evaluate the effects of MSCs on obesity-related insulin resistance and explore the underlying mechanism, particularly regarding splenic involvement.
Methods We induced obesity in mice by feeding them high-fat diets for 20 weeks. Human umbilical cord-derived MSCs (UC-MSCs) were systemically infused into the obese mice once per week for 6 weeks. Systemic glucose metabolic homeostasis and insulin sensitivity in epididymal adipose tissue (EAT) were evaluated. Then, we conducted in vivo blockade of IL-10 during UC-MSC infusion by intraperitoneally administrating an IL-10-neutralizing antibody twice per week. We also investigated the therapeutic effects of UC-MSCs on obese mice after removal of the spleen by splenectomy. Results UC-MSC infusions improved systemic metabolic homeostasis and alleviated insulin resistance in EAT but elicited no change in weight. Despite rare engraftment of UC-MSCs in EAT, UC-MSC infusions attenuated insulin resistance in EAT by polarizing macrophages into the M2 phenotype, coupled with elevated serum IL-10 levels. In vivo blockade of IL-10 blunted the effects of UC-MSCs on obese mice. Furthermore, UC-MSCs overwhelmingly homed to the spleen, and the ability of UC-MSCs to elevate serum IL-10 levels and alleviate insulin resistance was impaired in the absence of the spleen. Further in vivo and in vitro studies revealed that UC-MSCs promoted the capacity of regulatory T cells (Treg cells) to produce IL-10 in the spleen. Conclusions Our results demonstrated that UC-MSCs elevated serum IL-10 levels and subsequently promoted macrophage polarization, leading to alleviation of insulin resistance in EAT. The underlying mechanism was that UC-MSCs improved the capacity of Treg cells to produce IL-10 in the spleen. Our findings indicated that the spleen played a critical role in amplifying MSC-mediated immunomodulatory effects, which may contribute to maximizing MSC efficacy in clinical applications in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02791-6.
Collapse
Affiliation(s)
- Jing Xue
- Medical School of Chinese PLA, Beijing, China.,Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, Diabetes Center of People's Liberation Army (PLA), PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Jieqing Gao
- Department of Endocrinology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yulin Gu
- Medical School of Chinese PLA, Beijing, China.,Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aihong Wang
- Department of Endocrinology, Diabetes Center of People's Liberation Army (PLA), PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Songyan Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bing Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Wanlu Su
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Haixia Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weizheng Ren
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lv
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Medical School of Chinese PLA, Beijing, China. .,Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yu Cheng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
7
|
Barretto TA, Park E, Telliyan T, Liu E, Gallagher D, Librach C, Baker A. Vascular Dysfunction after Modeled Traumatic Brain Injury Is Preserved with Administration of Umbilical Cord Derived Mesenchymal Stromal Cells and Is Associated with Modulation of the Angiogenic Response. J Neurotrauma 2021; 38:2747-2762. [PMID: 33899499 DOI: 10.1089/neu.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vascular dysfunction arising from blood-brain barrier (BBB) breakdown after traumatic brain injury (TBI) can adversely affect neuronal health and behavioral outcome. Pericytes and endothelial cells of the neurovascular unit (NVU) function collectively to maintain strict regulation of the BBB through tight junctions. Secondary injury mechanisms, such as pro-angiogenic signals that contribute to pericyte loss, can prolong and exacerbate primary vascular injury. Human umbilical cord perivascular cells (HUCPVCs) are a source of mesenchymal stromal cells (MSCs) that have been shown to reduce vascular dysfunction after neurotrauma. We hypothesized that the perivascular properties of HUCPVCs can reduce vascular dysfunction after modeled TBI by preserving the pericyte-endothelial interactions. Rats were subjected to a moderate fluid percussion injury (FPI) and intravenously infused with 1,500,000 HUCPVCs post-injury. At acute time points (24 h and 48 h) quantitative polymerase chain reaction (qPCR) analysis demonstrated that the gene expression of angiopoietin-2 was increased with FPI and reduced with HUCPVCs. Immunofluorescent assessment of RECA-1 (endothelial cells) and platelet-derived growth factor receptors (PDGFR-β) (pericytes) revealed that capillary and pericyte densities as well as the co-localization of the two cells were decreased with FPI and preserved with HUCPVC administration. These acute HUCPVC-mediated protective effects were associated with less permeability to Evan's blue dye and increased expression of the tight junction occludin, suggesting less vascular leakage. Further, at 4 weeks post-injury, HUCPVC administration was associated with reduced anxiety and decreased β-amyloid precursor protein (β-APP) accumulation. In summary, HUCPVCs promoted pericyte-endothelial barrier function that was associated with improved long-term outcome.
Collapse
Affiliation(s)
- Tanya A Barretto
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Park
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Tamar Telliyan
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Elaine Liu
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Baker
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
9
|
Wang J, Jiao D, Huang X, Bai Y. Osteoclastic effects of mBMMSCs under compressive pressure during orthodontic tooth movement. Stem Cell Res Ther 2021; 12:148. [PMID: 33632323 PMCID: PMC7905894 DOI: 10.1186/s13287-021-02220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background During orthodontic tooth movement (OTM), alveolar bone remodelling is closely related to mechanical force. It is unclear whether stem cells can affect osteoclastogenesis to promote OTM. This study aimed to investigate the role of mouse bone marrow mesenchymal stem cells (mBMMSCs) under compression load in OTM. Methods A mouse OTM model was established, and GFP-labelled mBMMSCs and normal saline were injected into different groups of mice by tail vein injection. OTM distance was measured using tissue specimens and micro-computed tomography (micro-CT). The locations of mBMMSCs were traced using GFP immunohistochemistry. Haematoxylin-eosin staining, tartrate-resistant acid phosphate (TRAP) staining and immunohistochemistry of Runx2 and lipoprotein lipase were used to assess changes in the periodontal ligament during OTM. mBMMSCs under compression were co-cultured with mouse bone marrow-derived macrophages (mBMMs), and the gene expression levels of Rankl, Mmp-9, TRAP, Ctsk, Alp, Runx2, Ocn and Osterix were determined by RT-PCR. Results Ten days after mBMMSCs were injected into the tail vein of mice, the OTM distance increased from 176 (normal saline) to 298.4 μm, as determined by tissue specimen observation, and 174.2 to 302.6 μm, as determined by micro-CT metrological analysis. GFP-labelled mBMMSCs were mostly located on the compressed side of the periodontal ligament. Compared to the saline group, the number of osteoclasts in the alveolar bone increased significantly (P < 0.01) on the compressed side in the mBMMSC group. Three days after mBMMSC injection, the number of Runx2-GFP double-positive cells on the tension side was significantly higher than that on the compression side. After applying compressive force on the mBMMSCs in vitro for 2 days, RANKL expression was significantly higher than in the non-compression cells, but expression of Alp, Runx2, Ocn and Osterix was significantly decreased (P < 0.05). The numbers of osteoclasts differentiated in response to mBMMs co-cultured with mBMMSCs under pressure load and expression of osteoclast differentiation marker genes (Mmp-9, TRAP and Ctsk) were significantly higher than those in mBMMs stimulated by M-CSF alone (P < 0.05). Conclusions mBMMSCs are not only recruited to the compressed side of the periodontal ligament but can also promote osteoclastogenesis by expressing Rankl, improving the efficiency of OTM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Delong Jiao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
10
|
An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 2021; 11:41. [PMID: 33622388 PMCID: PMC7903655 DOI: 10.1186/s13578-021-00554-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment and rehabilitation of spinal cord injury (SCI) is a major problem in clinical medicine. Modern medicine has achieved minimal progress in improving the functions of injured nerves in patients with SCI, mainly due to the complex pathophysiological changes that present after injury. Inflammatory reactions occurring after SCI are related to various functions of immune cells over time at different injury sites. Macrophages are important mediators of inflammatory reactions and are divided into two different subtypes (M1 and M2), which play important roles at different times after SCI. Mesenchymal stem cells (MSCs) are characterized by multi-differentiation and immunoregulatory potentials, and different treatments can have different effects on macrophage polarization. MSC transplantation has become a promising method for eliminating nerve injury caused by SCI and can help repair injured nerve tissues. Therapeutic effects are related to the induced formation of specific immune microenvironments, caused by influencing macrophage polarization, controlling the consequences of secondary injury after SCI, and assisting with function recovery. Herein, we review the mechanisms whereby MSCs affect macrophage-induced specific immune microenvironments, and discuss potential avenues of investigation for improving SCI treatment.
Collapse
Affiliation(s)
- Nan An
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The Second Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiaxu Yang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hequn Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shengfeng Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Vawda R, Badner A, Hong J, Mikhail M, Dragas R, Xhima K, Jose A, Fehlings MG. Harnessing the Secretome of Mesenchymal Stromal Cells for Traumatic Spinal Cord Injury: Multicell Comparison and Assessment of In Vivo Efficacy. Stem Cells Dev 2020; 29:1429-1443. [PMID: 32962528 PMCID: PMC7703247 DOI: 10.1089/scd.2020.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell therapy offers significant promise for traumatic spinal cord injury (SCI), which despite many medical advances, has limited treatment strategies. Able to address the multifactorial and dynamic pathophysiology of SCI, cells present various advantages over standard pharmacological approaches. However, the use of live cells is also severely hampered by logistical and practical considerations. These include specialized equipment and expertise, standardization of cell stocks, sustained cell viability post-thawing, and cryopreservation-induced delayed-onset cell death. For this reason, we suggest a novel and clinically translatable alternative to live-cell systemic infusion, which retains the efficacy of the latter while overcoming many of its limitations. This strategy involves the administration of concentrated cell secretome and exploits the trophic mechanism by which stromal cells function. In this study, we compare the efficacy of intravenously delivered concentrated conditioned media (CM) from human umbilical cord matrix cells (HUCMCs), bone marrow mesenchymal stromal cells, as well as newborn and adult fibroblasts in a rat model of moderately severe cervical clip compression/contusion injury (C7--T1, 35 g). This is further paired with a thorough profile of the CM cytokines, chemokines, and angiogenic factors. The HUCMC-derived CM was most effective at limiting acute (48 h post-SCI) vascular pathology, specifically lesion volume, and functional vascularity. Principle component analysis (PCA), hierarchical clustering, and interaction analysis of proteins highly expressed in the HUCMC secretome suggest involvement of the MAPK/ERK, JAK/STAT, and immune cell migratory pathways. This "secretotherapeutic" strategy represents a novel and minimally invasive method to target multiple organ systems and several pathologies shortly after traumatic SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Mirriam Mikhail
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Kristiana Xhima
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Alejandro Jose
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
12
|
Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSDARD, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells Dev 2020; 29:586-598. [PMID: 32160799 DOI: 10.1089/scd.2019.0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.
Collapse
Affiliation(s)
- Tanira Giara Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo Henrique Rosado-de-Castro
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | | | | | - Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Barretto TA, Park K, Maghen L, Park E, Kenigsberg S, Gallagher D, Liu E, Gauthier-Fisher A, Librach C, Baker A. Axon Degeneration Is Rescued with Human Umbilical Cord Perivascular Cells: A Potential Candidate for Neuroprotection After Traumatic Brain Injury. Stem Cells Dev 2019; 29:198-211. [PMID: 31701812 DOI: 10.1089/scd.2019.0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) leads to delayed secondary injury events consisting of cellular and molecular cascades that exacerbate the initial injury. Human umbilical cord perivascular cells (HUCPVCs) secrete neurotrophic and prosurvival factors. In this study, we examined the effects of HUCPVC in sympathetic axon and cortical axon survival models and sought to determine whether HUCPVC provide axonal survival cues. We then examined the effects of the HUCPVC in an in vivo fluid percussion injury model of TBI. Our data indicate that HUCPVCs express neurotrophic and neural survival factors. They also express and secrete relevant growth and survival proteins when cultured alone, or in the presence of injured axons. Coculture experiments indicate that HUCPVCs interact preferentially with axons when cocultured with sympathetic neurons and reduce axonal degeneration. Nerve growth factor withdrawal in axonal compartments resulted in 66 ± 3% axon degeneration, whereas HUCPVC coculture rescued axon degeneration to 35 ± 3%. Inhibition of Akt (LY294002) resulted in a significant increase in degeneration compared with HUCPVC cocultures (48 ± 7% degeneration). Under normoxic conditions, control cultures showed 39 ± 5% degeneration. Oxygen glucose deprivation (OGD) resulted in 58 ± 3% degeneration and OGD HUCPVC cocultures reduced degeneration to 34 ± 5% (p < 0.05). In an in vivo model of TBI, immunohistochemical analysis of NF200 showed improved axon morphology in HUCPVC-treated animals compared with injured animals. These data presented in this study indicate an important role for perivascular cells in protecting axons from injury and a potential cell-based therapy to treat secondary injury after TBI.
Collapse
Affiliation(s)
- Tanya A Barretto
- Keenan Research Center, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Katya Park
- CReATe Fertility Center, Toronto, Canada
| | | | - Eugene Park
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | | | - Elaine Liu
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Clifford Librach
- CReATe Fertility Center, Toronto, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Division of Reproductive Endocrinology and Infertility, Departments of Obstetrics and Gynecology, Sunnybrook Health Sciences Center and Women's College Hospital, Toronto, Canada
| | - Andrew Baker
- Keenan Research Center, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Critical Care, St. Michael's Hospital, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Mendelson A, Strat AN, Bao W, Rosston P, Fallon G, Ohrn S, Zhong H, Lobo C, An X, Yazdanbakhsh K. Mesenchymal stromal cells lower platelet activation and assist in platelet formation in vitro. JCI Insight 2019; 4:126982. [PMID: 31434805 DOI: 10.1172/jci.insight.126982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
The complex process of platelet formation originates with the hematopoietic stem cell, which differentiates through the myeloid lineage, matures, and releases proplatelets into the BM sinusoids. How formed platelets maintain a low basal activation state in the circulation remains unknown. We identify Lepr+ stromal cells lining the BM sinusoids as important contributors to sustaining low platelet activation. Ablation of murine Lepr+ cells led to a decreased number of platelets in the circulation with an increased activation state. We developed a potentially novel culture system for supporting platelet formation in vitro using a unique population of CD51+PDGFRα+ perivascular cells, derived from human umbilical cord tissue, which display numerous mesenchymal stem cell (MSC) properties. Megakaryocytes cocultured with MSCs had altered LAT and Rap1b gene expression, yielding platelets that are functional with low basal activation levels, a critical consideration for developing a transfusion product. Identification of a regulatory cell that maintains low baseline platelet activation during thrombopoiesis opens up new avenues for improving blood product production ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center (NYBC), New York, New York, USA
| | | |
Collapse
|
15
|
Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019; 13:248. [PMID: 31244609 PMCID: PMC6563678 DOI: 10.3389/fncel.2019.00248] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the treatment of spinal cord injury (SCI). Advances in post-trauma management and intensive rehabilitation have significantly improved the prognosis of SCI and converted what was once an “ailment not to be treated” into a survivable injury, but the cold hard fact is that we still do not have a validated method to improve the paralysis of SCI. The irreversible functional impairment of the injured spinal cord is caused by the disruption of neuronal transduction across the injury lesion, which is brought about by demyelination, axonal degeneration, and loss of synapses. Furthermore, refractory substrates generated in the injured spinal cord inhibit spontaneous recovery. The discovery of the regenerative capability of central nervous system neurons in the proper environment and the verification of neural stem cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That hope was gradually replaced with mounting frustration when neuroprotective drugs, cell transplantation, and strategies to enhance remyelination, axonal regeneration, and neuronal plasticity demonstrated significant improvement in animal models of SCI but did not translate into a cure in human patients. However, recent advances in SCI research have greatly increased our understanding of the fundamental processes underlying SCI and fostered increasing optimism that these multiple treatment strategies are finally coming together to bring about a new era in which we will be able to propose encouraging therapies that will lead to appreciable improvements in SCI patients. In this review, we outline the pathophysiology of SCI that makes the spinal cord refractory to regeneration and discuss the research that has been done with cell replacement and biomaterial implantation strategies, both by itself and as a combined treatment. We will focus on the capacity of these strategies to facilitate the regeneration of neural connectivity necessary to achieve meaningful functional recovery after SCI.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery - Surgical Sciences, School of Medicine, Tokai University, Tokyo, Japan
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Spine Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Vawda R, Badner A, Hong J, Mikhail M, Lakhani A, Dragas R, Xhima K, Barretto T, Librach CL, Fehlings MG. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl Med 2019; 8:639-649. [PMID: 30912623 PMCID: PMC6591557 DOI: 10.1002/sctm.18-0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Localized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery. A moderately severe cervical clip compression/contusion injury was induced at C7‐T1 in adult female rats, followed by an intravenous tail vein infusion 1 hour post‐SCI of (a) term‐birth human umbilical cord perivascular cells (HUCPVCs); (b) first‐trimester human umbilical cord perivascular cells (FTM HUCPVCs); (c) adult bone marrow mesenchymal stem cells; or (d) vehicle control. Weekly behavioral testing was performed. Rats were sacrificed at 24 hours or 10 weeks post‐SCI and immunohistochemistry and ultrasound imaging were performed. Both term and FTM HUCPVC‐infused rats displayed improved (p < .05) grip strength compared with vehicle controls. However, only FTM HUCPVC‐infusion led to significant weight gain. All cell infusion treatments resulted in reduced glial scarring (p < .05). Cell infusion also led to increased axonal, myelin, and vascular densities (p < .05). Although post‐traumatic cavity volume was reduced with cell infusion, this did not reach significance. Taken together, we demonstrate selective long‐term functional recovery alongside histological improvements with HUCPVC infusion in a clinically relevant model of cervical SCI. Our findings highlight the potential of these cells for acute therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alam Lakhani
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristiana Xhima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|